Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Videos

Carla Shatz

Neurobiologist Carla Shatz, director of Stanford University Bio-X, has focused her research on how early brain circuits are transformed into adult connections during critical periods of development. Her work, which focuses on the development of the mammalian visual system, has relevance not only for treating disorders such as autism and schizophrenia, but also for understanding how the nervous and immune systems interact. This interview provides insights about what you can you learn from ski racing and how she got inspired to study neuroscience after her grandmother’s stroke.


Murine model of autism-like syndrome benefits from NAP treatment

Activity-dependent neuroprotective protein (ADNP) is essential for brain formation, and mutations in the ADNP-encoding gene have been linked to an autism-like syndrome in children that is characterized by developmental delay along with intellectual and social disabilities. An 8-amino acid motif derived from ADNP (referred to as NAP) has been shown to be neuroprotective, via enhancing dendritic spine formation, in mice lacking ADNP. In this episode, Illana Gozes and colleagues characterize Adnp+/- mice as a model of ANDP syndrome. Adnp+/- animals had reduced dendritic spine density, developmental delays, impaired vocalizations, and motor dysfunction along with memory and social impairment. Administration of NAP partially reversed behavior and developmental defects and increased dendritic spine density. The results of this study support further exploration of NAP administration for treatment of ADNP syndrome.


REG3α as a biomarker and therapeutic target for GVHD

Graft-versus-host-disease (GVHD) is a life-threatening complication of allogeneic BM transplantation that affects skin, liver, and the gastrointestinal (GI) tract. GI involvement is associated with the most severe form of disease and outcomes for these patients are poor. Treatments for GVHD are limited; therefore, a better understanding of markers of GI involvement have potential to improve treatment. In this episode, James Ferrara and colleagues identify the Paneth cell protein regenerating islet-derived 3α (REG3α) as a biomarker that is upregulated in sera of patients with GI GVHD. Moreover, using murine models, the authors determined that REG3α, which has well-known antimicrobial function, promotes intestinal stem cell survival; thereby, protecting the intestinal barrier. Together, these results indicate that strategies to increase REG3α should be explored for limiting GI GVHD.


Epigenetic alterations in stromal cells mediate prostate cancer phenotypes

Prostate cancer is an androgen-dependent disease; therefore, current approaches for treatment aim to disrupt androgen signaling. Unfortunately, this approach is rarely curative due to the selection of resistant clones and adaptation of stromal and endothelial cells to support tumor growth. In this episode, Neil Bhowmick and colleagues evaluated epigenetic alterations in prostate cancer-associated fibroblasts (CAFs) and determined that the Ras inhibitor RASAL3 is silenced in these cells, thereby driving macropinocytosis-mediated glutamine synthesis due to increased oncogenic Ras activity. The increase in stromal glutamine associated with neuroendocrine differentiation, and in prostate cancer patients, blood glutamine levels were elevated in patients that were resistant to androgen deprivation compared to those that were responsive. Together, these results suggest that strategies to prevent glutamine uptake be considered in conjunction with androgen deprivation.


Vitamin D3 metabolite enables bone fracture repair

Upwards of 10% of all bone fractures fail to heal properly, with dysfunctional repair even more common in individuals with metabolic defects. Vitamin D has been implicated in fracture healing, which involves formation of a soft callus at the fracture site that is later mineralized and ossified. In this episode, René St-Arnaud and colleagues determined that that ossification is impaired in Cyp24a1-deficient mice, which are unable to synthesize the vitamin D metabolite 24R,25-dihydroxyvitamin D3, following traumatic bone injury. FAM57B2 was upregulated in the fracture callus of Cyp24a1-deficient mice and an interaction between FAM57B2 and 24R,25-dihydroxyvitamin D3 in chondrocytes produced lactosylceramide, which supports callus mineralization. Importantly, lactosylceramide supplementation improved mineralization in both Cyp24a1- and Fam57b2-deficient calluses, suggesting that this 24R,25-dihydroxyvitamin D3–dependent pathway has potential to be targeted to optimize bone repair after fracture.

  • ←
  • 1
  • 2
  • 3
  • …
  • 32
  • 33
  • →
Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts