Impaired lymphangiogenesis is a complication of chronic complex diseases, including diabetes. VEGF-C/VEGFR3 signaling promotes lymphangiogenesis, but how this pathway is affected in diabetes remains poorly understood. We previously demonstrated that loss of epsins 1 and 2 in lymphatic endothelial cells (LECs) prevented VEGF-C–induced VEGFR3 from endocytosis and degradation. Here, we report that diabetes attenuated VEGF-C–induced lymphangiogenesis in corneal micropocket and Matrigel plug assays in WT mice but not in mice with inducible lymphatic-specific deficiency of epsins 1 and 2 (LEC-iDKO). Consistently, LECs isolated from diabetic LEC-iDKO mice elevated in vitro proliferation, migration, and tube formation in response to VEGF-C over diabetic WT mice. Mechanistically, ROS produced in diabetes induced c-Src–dependent but VEGF-C–independent VEGFR3 phosphorylation, and upregulated epsins through the activation of transcription factor AP-1. Augmented epsins bound to and promoted degradation of newly synthesized VEGFR3 in the Golgi, resulting in reduced availability of VEGFR3 at the cell surface. Preclinically, the loss of lymphatic-specific epsins alleviated insufficient lymphangiogenesis and accelerated the resolution of tail edema in diabetic mice. Collectively, our studies indicate that inhibiting expression of epsins in diabetes protects VEGFR3 against degradation and ameliorates diabetes-triggered inhibition of lymphangiogenesis, thereby providing a novel potential therapeutic strategy to treat diabetic complications.
Hao Wu, H.N. Ashiqur Rahman, Yunzhou Dong, Xiaolei Liu, Yang Lee, Aiyun Wen, Kim H.T. To, Li Xiao, Amy E. Birsner, Lauren Bazinet, Scott Wong, Kai Song, Megan L. Brophy, M. Riaj Mahamud, Baojun Chang, Xiaofeng Cai, Satish Pasula, Sukyoung Kwak, Wenxia Yang, Joyce Bischoff, Jian Xu, Diane R. Bielenberg, J. Brandon Dixon, Robert J. D’Amato, R. Sathish Srinivasan, Hong Chen
Myocardial infarction (MI) arising from obstruction of the coronary circulation engenders massive cardiomyocyte loss and replacement by non-contractile scar tissue, leading to pathological remodeling, dysfunction, and ultimately heart failure. This is presently a global health problem for which there is no effective cure. Following MI, the innate immune system directs the phagocytosis of dead cell debris in an effort to stimulate cell repopulation and tissue renewal. In the mammalian adult heart, however, the persistent influx of immune cells, coupled with the lack of an inherent regenerative capacity, results in cardiac fibrosis. Here, we reveal that stimulation of cardiac lymphangiogenesis with VEGF-C improves clearance of the acute inflammatory response after MI by trafficking immune cells to draining mediastinal lymph nodes (MLNs) in a process dependent on lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). Deletion of Lyve1 in mice, preventing docking and transit of leukocytes through the lymphatic endothelium, results in exacerbation of chronic inflammation and long-term deterioration of cardiac function. Our findings support targeting of the lymphatic/immune cell axis as a therapeutic paradigm to promote immune modulation and heart repair.
Joaquim Miguel Vieira, Sophie Norman, Cristina Villa del Campo, Thomas J. Cahill, Damien N. Barnette, Mala Gunadasa-Rohling, Louise A. Johnson, David R. Greaves, Carolyn A. Carr, David G. Jackson, Paul R. Riley
Red blood cells (RBCs) influence rheology, release ADP, ATP and nitric oxide suggesting a role for RBCs in hemostasis and thrombosis. Here we provide evidence for a significant contribution of RBCs to thrombus formation. Anemic mice showed enhanced occlusion times upon injury of the carotid artery. A small population of RBCs was located to platelet thrombi and enhanced platelet activation by a direct cell contact via the FasL-FasR (CD95) pathway known to induce apoptosis. Activation of platelets in the presence of RBCs led to platelet FasL exposure that activated FasR on RBCs responsible for externalization of phosphatidylserine (PS) on the RBC membrane. Inhibition or genetic deletion of either FasL or FasR resulted in reduced PS exposure of RBCs and platelets, decreased thrombin generation and reduced thrombus formation in vitro and protection against arterial thrombosis in vivo. Direct cell contacts of platelets and RBCs via FasL-FasR were shown after ligation of the inferior vena cava (IVC) and in surgical specimens of patients after thrombectomy. In a flow restriction model of the IVC, reduced thrombus formation was observed in FasL–/– mice. Taken together, our data reveal a significant contribution of RBCs to thrombosis by the FasL-FasR pathway.
Christoph Klatt, Irena Krüger, Saskia Zey, Kim-Jürgen Krott, Martina Spelleken, Nina Sarah Gowert, Alexander Oberhuber, Lena Pfaff, Wiebke Lückstädt, Kerstin Jurk, Martin Schaller, Hadi Al-Hasani, Jürgen Schrader, Steffen Massberg, Konstantin Stark, Hubert Schelzig, Malte Kelm, Margitta Elvers
Medial vascular calcification, associated with enhanced mortality in chronic kidney disease (CKD), is fostered by osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Here, we describe that serum- and glucocorticoid-inducible kinase 1 (SGK1) was upregulated in VSMCs under calcifying conditions. In primary human aortic VSMCs, overexpression of constitutively active SGK1S422D, but not inactive SGK1K127N, upregulated osteo-/chondrogenic marker expression and activity, effects pointing to increased osteo-/chondrogenic transdifferentiation. SGK1S422D induced nuclear translocation and increased transcriptional activity of NF-κB. Silencing or pharmacological inhibition of IKK abrogated the osteoinductive effects of SGK1S422D. Genetic deficiency, silencing, and pharmacological inhibition of SGK1 dissipated phosphate-induced calcification and osteo-/chondrogenic transdifferentiation of VSMCs. Aortic calcification, stiffness, and osteo-/chondrogenic transdifferentiation in mice following cholecalciferol overload were strongly reduced by genetic knockout or pharmacological inhibition of Sgk1 by EMD638683. Similarly, Sgk1 deficiency blunted vascular calcification in apolipoprotein E–deficient mice after subtotal nephrectomy. Treatment of human aortic smooth muscle cells with serum from uremic patients induced osteo-/chondrogenic transdifferentiation, effects ameliorated by EMD638683. These observations identified SGK1 as a key regulator of vascular calcification. SGK1 promoted vascular calcification, at least partly, via NF-κB activation. Inhibition of SGK1 may, thus, reduce the burden of vascular calcification in CKD.
Jakob Voelkl, Trang T.D. Luong, Rashad Tuffaha, Katharina Musculus, Tilman Auer, Xiaoming Lian, Christoph Daniel, Daniel Zickler, Beate Boehme, Michael Sacherer, Bernhard Metzler, Dietmar Kuhl, Maik Gollasch, Kerstin Amann, Dominik N. Müller, Burkert Pieske, Florian Lang, Ioana Alesutan
Tumor angiogenesis occurs through regulation of genes that orchestrate endothelial sprouting and vessel maturation, including deposition of a vessel-associated extracellular matrix. CD93 is a transmembrane receptor that is up-regulated in tumor vessels in many cancers, including high-grade glioma. Here, we demonstrate that CD93 regulates integrin-β1-signaling and organization of fibronectin fibrillogenesis during tumor vascularization. In endothelial cells and mouse retina, CD93 was found to be expressed in endothelial filopodia and to promote filopodia formation. The CD93 localization to endothelial filopodia was stabilized by interaction with multimerin-2 (MMRN2), which inhibited its proteolytical cleavage. The CD93-MMRN2 complex was required for activation of integrin-β1, phosphorylation of focal adhesion kinase (FAK) and fibronectin fibrillogenesis in endothelial cells. Consequently, tumor vessels in gliomas implanted orthotopically in CD93-deficient mice showed diminished activation of integrin-β1 and lacked organization of fibronectin into fibrillar structures. These findings demonstrate a key role of CD93 in vascular maturation and organization of the extracellular matrix in tumors, identifying it as a potential target for therapy.
Roberta Lugano, Kalyani Vemuri, Di Yu, Michael Bergqvist, Anja Smits, Magnus Essand, Staffan Johansson, Elisabetta Dejana, Anna Dimberg
Haemostasis requires conversion of fibrinogen to fibrin fibres that generate a characteristic network, interact with blood cells, and initiate tissue repair. The fibrin network is porous and highly permeable, but the spatial arrangement of the external clot face is unknown. Here we show that fibrin transitioned to the blood-air interface through Langmuir film formation, producing a protective film confining the clot. We demonstrated that only fibrin is required to form the film, and that it occurred in vitro and in vivo. The fibrin film connected to the underlying clot network through tethering fibres. It was digested by plasmin and formation of the film was prevented with surfactants. Functionally, the film retained blood cells and protected against penetration by bacterial pathogens in a murine model of dermal infection. Our data show a remarkable aspect of blood clotting, in which fibrin forms a protective film covering the external surface of the clot, defending the organism against microbial invasion.
Fraser L. Macrae, Cédric Duval, Praveen Papareddy, Stephen R. Baker, Nadira Yuldasheva, Katherine J. Kearney, Helen R. McPherson, Nathan Asquith, Joke Konings, Alessandro Casini, Jay L. Degen, Simon D. Connell, Helen Philippou, Alisa S. Wolberg, Heiko Herwald, Robert A.S. Ariëns
Immune checkpoint blockade (ICB) has demonstrated curative potential in several types of cancer, but only for a small number of patients. Thus, the identification of reliable and noninvasive biomarkers for predicting ICB responsiveness is an urgent unmet need. Here, we show that ICB increased tumor vessel perfusion in treatment-sensitive EO771 and MMTV-PyVT breast tumor as well as CT26 and MCA38 colon tumor models, but not in treatment-resistant MCaP0008 and 4T1 breast tumor models. In the sensitive tumor models, the ability of anti–cytotoxic T lymphocyte–associated protein 4 or anti–programmed cell death 1 therapy to increase vessel perfusion strongly correlated with its antitumor efficacy. Moreover, globally enhanced tumor vessel perfusion could be detected by Doppler ultrasonography before changes in tumor size, which predicted final therapeutic efficacy with more than 90% sensitivity and specificity. Mechanistically, CD8+ T cell depletion, IFN-γ neutralization, or implantation of tumors in IFN-γ receptor knockout mice abrogated the vessel perfusion enhancement and antitumor effects of ICB. These results demonstrated that ICB increased vessel perfusion by promoting CD8+ T cell accumulation and IFN-γ production, indicating that increased vessel perfusion reflects the successful activation of antitumor T cell immunity by ICB. Our findings suggest that vessel perfusion can be used as a novel noninvasive indicator for predicting ICB responsiveness.
Xichen Zheng, Zhaoxu Fang, Xiaomei Liu, Shengming Deng, Pei Zhou, Xuexiang Wang, Chenglin Zhang, Rongping Yin, Haitian Hu, Xiaolan Chen, Yijie Han, Yun Zhao, Steven H. Lin, Songbing Qin, Xiaohua Wang, Betty Y.S. Kim, Penghui Zhou, Wen Jiang, Qingyu Wu, Yuhui Huang
Pulmonary arterial hypertension (PAH) is characterized by a progressive accumulation of pulmonary artery smooth muscle cells (PA-SMCs) in pulmonary arterioles leading to the narrowing of the lumen, right heart failure, and death. Although most studies have supported the notion of a role for IL-6/glycoprotein 130 (gp130) signaling in PAH, it remains unclear how this signaling pathway determines the progression of the disease. Here, we identify ectopic upregulation of membrane-bound IL-6 receptor (IL6R) on PA-SMCs in PAH patients and in rodent models of pulmonary hypertension (PH) and demonstrate its key role for PA-SMC accumulation in vitro and in vivo. Using Sm22a-Cre Il6rfl/fl, which lack Il6r in SM22A-expressing cells, we found that these animals are protected against chronic hypoxia–induced PH with reduced PA-SMC accumulation, revealing the potent pro-survival potential of membrane-bound IL6R. Moreover, we determine that treatment with IL6R-specific antagonist reverses experimental PH in two rat models. This therapeutic strategy holds promise for future clinical studies in PAH.
Yuichi Tamura, Carole Phan, Ly Tu, Morane Le Hiress, Raphaël Thuillet, Etienne-Marie Jutant, Elie Fadel, Laurent Savale, Alice Huertas, Marc Humbert, Christophe Guignabert
Adult vascular smooth muscle cells (VSMCs) possess the peculiar ability to de-differentiate in response to extracellular cues, such as vascular damage and inflammation. De-differentiated VSMCs are proliferative, migratory, and have decreased contractile capacity. VSMC dedifferentiation contributes not only to vascular repair, but also to cardiovascular pathologies, such as intimal hyperplasia/restenosis in coronary artery or peripheral vascular diseases and arterial aneurysm. We here demonstrate the role of ubiquitin-like, containing PHD and RING finger domains, 1 (UHRF1) as an epigenetic master regulator of VSMC plasticity. The expression of UHRF1 correlates with the development of a wide array of vascular pathologies associated also with modulation of non-coding RNAs, such as microRNAs. Importantly, miR-145, a pivotal gene regulating VSMC plasticity, which is reduced in vascular diseases, was found to control Uhrf1 mRNA translation. In turn, UHRF1 triggers VSMC proliferation by directly repressing the promoters of cell cycle inhibitor genes, such as p21 and p27, and of key pro-differentiation genes via the methylation of DNA and histones. Local vascular viral delivery of Uhrf1 shRNAs or Uhrf1 VSMC-specific deletion prevented intimal hyperplasia in mouse carotid artery and decreased vessel damage in a mouse model of aortic aneurysm.Our study demonstrates the fundamental role of Uhrf1 in regulating VSMC phenotype by promoting proliferation and de-differentiation. UHRF1 targeting may hold therapeutic potential in vascular pathologies, modulating also the VSMC component.
Leonardo Elia, Paolo Kunderfranco, Pierluigi Carullo, Marco Vacchiano, Floriana Maria Farina, Ignacio Fernando Hall, Stefano Mantero, Cristina Panico, Roberto Papait, Gianluigi Condorelli, Manuela Quintavalle
BACKGROUND. Sporadic vascular malformations (VMs) are complex congenital anomalies of blood vessels that lead to stroke, life-threatening bleeds, disfigurement, overgrowth, and/or pain. Therapeutic options are severely limited and multi-disciplinary management remains challenging, particularly for high-flow arteriovenous malformations (AVM). METHODS. To investigate the pathogenesis of sporadic intracranial and extracranial VMs in 160 children in which known genetic causes had been excluded, we sequenced DNA from affected tissue and optimised analysis for detection of low mutant allele frequency. RESULTS. We discovered multiple mosaic activating variants in four genes of the RAS-MAPK pathway, KRAS, NRAS, BRAF, and MAP2K1, a pathway commonly activated in cancer and responsible for the germ-line RAS-opathies. These variants were more frequent in high-flow than low-flow VMs. In vitro characterisation and two transgenic zebrafish AVM models which recapitulated the human phenotype validated the pathogenesis of the mutant alleles. Importantly, treatment of AVM-BRAF mutant zebrafish with the BRAF inihibitor, Vemurafinib, restored blood flow in AVM. CONCLUSIONS. Our findings uncover a major cause of sporadic vascular malformations of different clinical types, and thereby offer the potential of personalised medical treatment by repurposing existing licensed cancer therapies. FUNDING. This work was funded or supported by grants from AVM Butterfly Charity, the Wellcome Trust (UK), the Medical Research Council (UK), the UK National Institute for Health Research, L’Oreal-Melanoma Research Alliance, the European Research Council, and the National Human Genome Research (US).
Lara Al-Olabi, Satyamaanasa Polubothu, Katherine Dowsett, Katrina A. Andrews, Paulina Stadnik, Agnel P. Joseph, Rachel Knox, Alan Pittman, Graeme Clark, William Baird, Neil Bulstrode, Mary Glover, Kristiana Gordon, Darren Hargrave, Susan M. Huson, Thomas S. Jacques, Gregory James, Hannah Kondolf, Loshan Kangesu, Kim M. Keppler-Noreuil, Amjad Khan, Marjorie J. Lindhurst, Mark Lipson, Sahar Mansour, Justine O'Hara, Caroline Mahon, Anda Mosica, Celia Moss, Aditi Murthy, Juling Ong, Victoria E. Parker, Jean-Baptiste Rivière, Julie C. Sapp, Neil J. Sebire, Rahul Shah, Branavan Sivakumar, Anna Thomas, Alex Virasami, Regula Waelchli, Zhiqiang Zeng, Leslie G. Biesecker, Alex Barnacle, Maya Topf, Robert K. Semple, E. Elizabeth Patton, Veronica A. Kinsler