Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

In-Press Preview

  • 386 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 19
  • 20
  • 21
  • …
  • 38
  • 39
  • Next →
Ascorbic acid–induced TET activation mitigates adverse hydroxymethylcystosine loss in renal cell carcinoma
Niraj Shenoy, … , Yiyu Zou, Amit Verma
Niraj Shenoy, … , Yiyu Zou, Amit Verma
Published January 31, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI98747.
View: Text | PDF

Ascorbic acid–induced TET activation mitigates adverse hydroxymethylcystosine loss in renal cell carcinoma

  • Text
  • PDF
Abstract

Although ccRCC has been shown to have widespread aberrant cytosine methylation and loss of hydroxymethylation (5hmC), the prognostic impact and therapeutic targeting of this epigenetic aberrancy has not been fully explored. Analysis of 576 primary ccRCC samples demonstrated that loss of 5hmC was significantly associated with aggressive clinicopathologic features and was an independent adverse prognostic factor. Loss of 5hmC also predicted reduced progression free survival after resection of non-metastatic disease. The loss of 5hmC in ccRCC was not due to mutational or transcriptional inactivation of TET enzymes, but by their functional inactivation by l-2-hydroxyglutarate (L2HG) that was overexpressed due to the deletion and under-expression of l-2-hydroxyglutarate dehydrogenase (L2HGDH). Ascorbic acid (AA) reduced methylation and restored genome wide 5hmC levels via TET activation. Fluorescence quenching of the recombinant TET-2 protein was unaffected by L2HG in the presence of AA. Pharmacologic AA treatment led to reduced growth of ccRCC in vitro and reduced tumor growth in vivo, with increased intratumoral 5hmC. These data demonstrate that reduced 5hmC is associated with reduced survival in ccRCC and provide a preclinical rationale for exploring the therapeutic potential of high dose AA in ccRCC.

Authors

Niraj Shenoy, Tushar D. Bhagat, John C. Cheville, Christine Lohse, Sanchari Bhattacharyya, Alexander Tischer, Venkata Machha, Shanisha Gordon-Mitchell, Gaurav S. Choudhary, Li-Fan Wong, LouAnn Gross, Emily Ressegue, Bradley C. Leibovich, Stephen A. Boorjian, Ulrich Steidl, Xiaosheng Wu, Kith Pradhan, Benjamin Gartrell, Beamon Agarwal, Lance Pagliaro, Masako Suzuki, John M. Greally, Dinesh Rakheja, R. Houston Thompson, Katalin Susztak, Thomas Witzig, Yiyu Zou, Amit Verma

×

T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy
Tori N. Yamamoto, … , Nicholas P. Restifo, Christopher A. Klebanoff
Tori N. Yamamoto, … , Nicholas P. Restifo, Christopher A. Klebanoff
Published January 29, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI121491.
View: Text | PDF

T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy

  • Text
  • PDF
Abstract

Across clinical trials, T cell expansion and persistence following adoptive cell transfer (ACT) have correlated with superior patient outcomes. Herein, we undertook a pan-cancer analysis to identify actionable ligand/receptor pairs capable of compromising T cell durability following ACT. We discovered that FASLG, the gene encoding the apoptosis-inducing ligand FasL, is overexpressed within the majority of human tumor microenvironments (TMEs). Further, we uncovered that Fas, the receptor for FasL, is highly expressed on patient-derived T cells used for clinical ACT. We hypothesized that a cognate Fas-FasL interaction within the TME might limit both T cell persistence and anti-tumor efficacy. We discovered that genetic engineering of Fas variants impaired in the ability to bind FADD functioned as dominant negative receptors (DNRs), preventing FasL-induced apoptosis in Fas-competent T cells. T cells co-engineered with a Fas DNR and either a T cell receptor or chimeric antigen receptor exhibited enhanced persistence following ACT, resulting in superior anti-tumor efficacy against established solid and hematologic cancers. Despite increased longevity, Fas DNR-engineered T cells did not undergo aberrant expansion or mediate autoimmunity. Thus, T cell-intrinsic disruption of Fas signaling through genetic engineering represents a potentially universal strategy to enhance ACT efficacy across a broad range of human malignancies.

Authors

Tori N. Yamamoto, Ping-Hsien Lee, Suman K. Vodnala, Devikala Gurusamy, Rigel J. Kishton, Zhiya Yu, Arash Eidizadeh, Robert Eil, Jessica Fioravanti, Luca Gattinoni, James N. Kochenderfer, Terry J. Fry, Bulent Arman Aksoy, Jeffrey Hammerbacher, Anthony C. Cruz, Richard M. Siegel, Nicholas P. Restifo, Christopher A. Klebanoff

×

Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice
María Isabel Cuartero, … , Ignacio Lizasoain, María Àngeles Moro
María Isabel Cuartero, … , Ignacio Lizasoain, María Àngeles Moro
Published January 24, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI120412.
View: Text | PDF

Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice

  • Text
  • PDF
Abstract

Post-stroke cognitive impairment is considered one of the main complications during the chronic phase of ischemic stroke. In the adult brain, the hippocampus regulates both encoding and retrieval of new information through adult neurogenesis. Nevertheless, the lack of predictive models and studies based on the forgetting processes hinder the understanding of memory alterations after stroke. Our aim was to explore whether post-stroke neurogenesis participates in the development of long-term memory impairment. Here we show a hippocampal neurogenesis burst that persisted one month after stroke and that correlated with an impaired contextual and spatial memory performance. Furthermore, we demonstrate that the enhancement of hippocampal neurogenesis after stroke by physical activity or memantine treatment weakened existing memories. More importantly, stroke-induced newborn neurons promoted an aberrant hippocampal circuitry remodelling with differential features at ipsi- and contralesional levels. Strikingly, inhibition of stroke-induced hippocampal neurogenesis by temozolomide treatment or using a genetic approach (Nestin-CreERT2/NSE-DTA mice) impeded the forgetting of old memories. These results suggest that hippocampal neurogenesis modulation could be considered as a potential approach for post-stroke cognitive impairment.

Authors

María Isabel Cuartero, Juan de la Parra, Alberto Pérez-Ruiz, Isabel Bravo-Ferrer, Violeta Durán-Laforet, Alicia García-Culebras, Juan Manuel García-Segura, Jagroop Dhaliwal, Paul W. Frankland, Ignacio Lizasoain, María Àngeles Moro

×

Viral-mediated delivery of antibody targeting TAR DNA–binding protein 43 mitigates associated neuropathology
Silvia Pozzi, … , Claude Gravel, Jean-Pierre Julien
Silvia Pozzi, … , Claude Gravel, Jean-Pierre Julien
Published January 22, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123931.
View: Text | PDF

Viral-mediated delivery of antibody targeting TAR DNA–binding protein 43 mitigates associated neuropathology

  • Text
  • PDF
Abstract

The cytoplasmic aggregation of TDP-43 is a hallmark of degenerating neurons in amyotrophic lateral sclerosis (ALS) and subsets of frontotemporal dementia (FTD). In order to reduce TDP-43 pathology, we have generated single chain (scFv) antibodies against the RNA recognition motif 1 (RRM1) of TDP-43 which is involved in abnormal protein self-aggregation and interaction with p65 nuclear factor kappa B (NFKB). Viral-mediated delivery into the nervous system of a scFv antibody, named VH7Vk9, reduced microgliosis in a mouse model of acute neuroinflammation and it mitigated cognitive impairment, motor defects, TDP-43 proteinopathy and neuroinflammation in transgenic mice expressing ALS-linked TDP-43 mutations. These results suggest that antibodies targeting the RRM1 domain of TDP-43 might provide new therapeutic avenues for treatment of ALS and FTD.

Authors

Silvia Pozzi, Sai Sampath Thammisetty, Philippe Codron, Reza Rahimian, Karine V. Plourde, Geneviève Soucy, Christine Bareil, Daniel Phaneuf, Jasna Kriz, Claude Gravel, Jean-Pierre Julien

×

Endogenous glucocorticoids prevent gastric metaplasia by suppressing spontaneous inflammation
Jonathan T. Busada, … , Donald N. Cook, John A. Cidlowski
Jonathan T. Busada, … , Donald N. Cook, John A. Cidlowski
Published January 17, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123233.
View: Text | PDF

Endogenous glucocorticoids prevent gastric metaplasia by suppressing spontaneous inflammation

  • Text
  • PDF
Abstract

In the stomach, chronic inflammation causes metaplasia and creates a favorable environment for the evolution of gastric cancer. Glucocorticoids are steroid hormones that repress proinflammatory stimuli but their role in the stomach is unknown. In this study, we show that endogenous glucocorticoids are required to maintain gastric homeostasis. Removal of circulating glucocorticoids in mice by adrenalectomy resulted in the rapid onset of spontaneous gastric inflammation, oxyntic atrophy, and spasmolytic polypeptide-expressing metaplasia (SPEM), a precursor of gastric cancer. SPEM and oxyntic atrophy occurred independently of lymphocytes. However, depletion of monocytes and macrophages by clodronate treatment or inhibition of gastric monocyte infiltration using the Cx3cr1 knockout mouse model prevented SPEM development. Our results highlight the requirement for endogenous glucocorticoid signaling within the stomach to prevent spontaneous gastric inflammation and metaplasia and suggest that glucocorticoid deficiency may lead to gastric cancer development.

Authors

Jonathan T. Busada, Sivapriya Ramamoorthy, Derek W. Cain, Xiaojiang Xu, Donald N. Cook, John A. Cidlowski

×

Inhibiting Wee1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis
Amirali B. Bukhari, … , Gordon K. Chan, Armin M. Gamper
Amirali B. Bukhari, … , Gordon K. Chan, Armin M. Gamper
Published January 15, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122622.
View: Text | PDF

Inhibiting Wee1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis

  • Text
  • PDF
Abstract

We used the cancer intrinsic property of oncogene-induced DNA damage as the base for a conditional synthetic lethality approach. To target mechanisms important for cancer cell adaptation to genotoxic stress and thereby to achieve cancer cell-specific killing, we combined inhibition of the kinases ATR and Wee1. Wee1 regulates cell cycle progression, whereas ATR is an apical kinase in the DNA damage response. In an orthotopic breast cancer model, tumor-selective synthetic lethality between bioavailable ATR and Wee1 inhibitors led to tumor remission and inhibited metastasis with minimal side effects. ATR and Wee1 inhibition had a higher synergistic effect in cancer stem cells than in bulk cancer cells, compensating for the lower sensitivity of cancer stem cells to the individual drugs. Mechanistically, the combination treatment caused cells with unrepaired or under-replicated DNA to enter mitosis leading to mitotic catastrophe. As these inhibitors of ATR and Wee1 are already in phase I/II clinical trials, this knowledge could soon be translated into the clinic, especially as we showed that the combination treatment targets a wide range of tumor cells. Particularly the anti-metastatic effect of combined Wee1/ATR inhibition and the low toxicity of ATR inhibitors compared to Chk1 inhibitors has great clinical potential.

Authors

Amirali B. Bukhari, Cody W. Lewis, Joanna J. Pearce, Deandra Luong, Gordon K. Chan, Armin M. Gamper

×

Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus
Richard Furie, … , Dania Rabah, Nathalie Franchimont
Richard Furie, … , Dania Rabah, Nathalie Franchimont
Published January 15, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124466.
View: Text | PDF

Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus

  • Text
  • PDF
Abstract

Background/Purpose: Plasmacytoid dendritic cells (pDC) produce large amounts of type I IFN (IFN-I), cytokines convincingly linked to systemic lupus erythematosus (SLE) pathogenesis. BIIB059 is a humanized mAb that binds BDCA2, a pDC-specific receptor that inhibits the production of IFN-I and other inflammatory mediators when ligated. A first-in-human study was conducted to assess safety, tolerability, pharmacokinetic (PK) and pharmacodynamic (PD) effects of single BIIB059 doses in healthy volunteers (HV) and patients with SLE with active cutaneous disease as well as proof of biological activity and preliminary clinical response in the SLE cohort. Methods: A randomized, double-blind, placebo-controlled, clinical trial was conducted in HV (n=54) and patients with SLE (n=12). All subjects were monitored for adverse events. Serum BIIB059 concentrations, BDCA2 levels on pDCs, and IFN-responsive biomarkers in whole blood and skin biopsies were measured. Skin disease activity was determined using the Cutaneous Lupus Erythematosus Disease Area and Severity Index Activity (CLASI-A).Results: Single doses of BIIB059 were associated with a favorable safety and PK profile. BIIB059 administration led to BDCA2 internalization on pDCs, which correlated with circulating BIIB059 levels. BIIB059 administration in patients with SLE decreased expression of IFN response genes in blood, normalized MxA expression and reduced immune infiltrates in skin lesions, and decreased CLASI-A score. Conclusion: Single doses of BIIB059 were associated with favorable safety and PK/PD profiles, and robust target engagement and biological activity, supporting further development of BIIB059 in SLE. The data suggest that targeting pDCs may be beneficial for patients with SLE, especially those with cutaneous manifestations.

Authors

Richard Furie, Victoria P. Werth, Joseph F. Merola, Lauren Stevenson, Taylor L. Reynolds, Himanshu Naik, Wenting Wang, Romy Christmann, Agnes Gardet, Alex Pellerin, Stefan Hamann, Pavan Auluck, Catherine Barbey, Parul Gulati, Dania Rabah, Nathalie Franchimont

×

Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair
Zhi Zeng, … , John Hwa, Wai Ho Tang
Zhi Zeng, … , John Hwa, Wai Ho Tang
Published January 15, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124508.
View: Text | PDF

Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair

  • Text
  • PDF
Abstract

Upon arterial injury, endothelial denudation leads to platelet activation, and delivery of multiple agents (e.g. TXA2, PDGF) promoting VSMC dedifferentiation, and proliferation, in injury repair (intimal hyperplasia). Resolution of vessel injury repair, and prevention of excessive repair (switching VSMC back to a differentiated quiescent state) is a poorly understood process. We now report that internalization of activated platelets by VSMCs promotes resolution of arterial injury by switching on VSMC quiescence. Ex vivo and in vivo studies using lineage tracing reporter mice (PF4-Cre x mTmG) demonstrated uptake of green platelets by red vascular smooth muscle cells upon arterial wire injury. Genome-wide miRNA sequencing of VSMCs co-cultured with activated platelets identified significant increases in platelet-derived miR-223. miR-223 appears to directly target PDGFRβ (in VSMCs) reversing the injury-induced dedifferentiation. Upon arterial injury platelet miR-223 knockout mice exhibit increased intimal hyperplasia, whereas miR-223 mimics reduced intimal hyperplasia. Diabetic mice with reduced expression of miR-223, exhibited enhanced VSMC dedifferentiation, proliferation, and increased intimal hyperplasia. Horizontal transfer of platelet-derived miRNAs into VSMCs provide a novel mechanism for regulating VSMC phenotypic switching. Platelets thus play a dual role in vascular injury repair, initiating an immediate repair process, and concurrently, a delayed process to prevent excessive repair.

Authors

Zhi Zeng, Luoxing Xia, Xuejiao Fan, Allison C. Ostriker, Timur Yarovinsky, Meiling Su, Yuan Zhang, Xiangwen Peng, Xie Yi, Lei Pi, Xiaoqiong Gu, Sookja Kim Chung, Kathleen A. Martin, Renjing Liu, John Hwa, Wai Ho Tang

×

CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen
Shiteng Duan, … , Reynold A. Panettieri Jr., James C. Paulson
Shiteng Duan, … , Reynold A. Panettieri Jr., James C. Paulson
Published January 15, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125456.
View: Text | PDF

CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen

  • Text
  • PDF
Abstract

Allergen immunotherapy for patients with allergies begins with weekly escalating doses of allergen under medial supervision to monitor and treat IgE-mast cell mediated anaphylaxis. There is currently no treatment to safely desensitize mast cells to enable robust allergen immunotherapy with therapeutic levels of allergen. Here we demonstrated that liposomal nanoparticles bearing an allergen and a high-affinity glycan ligand of the inhibitory receptor CD33 profoundly suppressed IgE-mediated activation of mast cells, prevented anaphylaxis in transgenic mice with mast cells expressing human CD33, and desensitized mice from subsequent allergen challenge for several days. We showed that high levels of CD33 were consistently expressed on human skin mast cells, and that the antigenic-liposomes with CD33 ligand prevented IgE-mediated bronchoconstriction in slices of human lung. The results demonstrated the potential of exploiting CD33 to desensitize mast cells to provide a therapeutic window for administering allergen immunotherapy without triggering anaphylaxis.

Authors

Shiteng Duan, Cynthia J. Koziol-White, William F. Jester Jr., Corwin M. Nycholat, Matthew S. Macauley, Reynold A. Panettieri Jr., James C. Paulson

×

Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance
Daisuke Muraoka, … , Naozumi Harada, Hiroshi Shiku
Daisuke Muraoka, … , Naozumi Harada, Hiroshi Shiku
Published January 10, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI97642.
View: Text | PDF

Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance

  • Text
  • PDF
Abstract

Immune checkpoint inhibitors and adoptive transfer of gene-engineered T cells have emerged as novel therapeutic modalities for hard-to-treat solid tumors; however, many patients are refractory to these immunotherapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. By comparing the tumor microenvironment of checkpoint inhibition-sensitive and -resistant murine solid tumors, we observed that the resistant tumors had low immunogenicity and lacked infiltration of CD8+ T cells at the tumor site. We identified antigen presentation by CD11b+F4/80+ tumor-associated macrophages (TAMs) as a key factor correlated with immune resistance. In the resistant tumors, TAMs remained inactive and did not exert antigen-presenting activity. Targeted delivery of a long peptide antigen to TAMs by using a nano-sized hydrogel (nanogel) in the presence of a Toll-like receptor agonist activated TAMs, induced their antigen-presenting activity, and thereby transformed the resistant tumors into tumors sensitive to adaptive immune responses such as adoptive transfer of tumor-specific T cell receptor-engineered T cells. These results indicate that the status and function of TAMs have a significant impact on tumor immune sensitivity and also that manipulation of TAM functions would be an effective approach for improving the efficacy of immunotherapies.

Authors

Daisuke Muraoka, Naohiro Seo, Tae Hayashi, Yoshiro Tahara, Keisuke Fujii, Isao Tawara, Yoshihiro Miyahara, Kana Okamori, Hideo Yagita, Seiya Imoto, Rui Yamaguchi, Mitsuhiro Komura, Satoru Miyano, Masahiro Goto, Shin-ichi Sawada, Akira Asai, Hiroaki Ikeda, Kazunari Akiyoshi, Naozumi Harada, Hiroshi Shiku

×
  • ← Previous
  • 1
  • 2
  • …
  • 19
  • 20
  • 21
  • …
  • 38
  • 39
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts