Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis
Hui-fang Zhou, … , Samuel A. Wickline, Christine T.N. Pham
Hui-fang Zhou, … , Samuel A. Wickline, Christine T.N. Pham
Published October 1, 2014; First published August 26, 2014
Citation Information: J Clin Invest. 2014;124(10):4363-4374. https://doi.org/10.1172/JCI75673.
View: Text | PDF
Categories: Technical Advance Inflammation

Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis

  • Text
  • PDF
Abstract

The NF-κB signaling pathway is implicated in various inflammatory diseases, including rheumatoid arthritis (RA); therefore, inhibition of this pathway has the potential to ameliorate an array of inflammatory diseases. Given that NF-κB signaling is critical for many immune cell functions, systemic blockade of this pathway may lead to detrimental side effects. siRNAs coupled with a safe and effective delivery nanoplatform may afford the specificity lacking in systemic administration of small-molecule inhibitors. Here we demonstrated that a melittin-derived cationic amphipathic peptide combined with siRNA targeting the p65 subunit of NF-κB (p5RHH-p65) noncovalently self-assemble into stable nanocomplexes that home to the inflamed joints in a murine model of RA. Specifically, administration of p5RHH-p65 siRNA nanocomplexes abrogated inflammatory cytokine expression and cellular influx into the joints, protected against bone erosions, and preserved cartilage integrity. The p5RHH-p65 siRNA nanocomplexes potently suppressed early inflammatory arthritis without affecting p65 expression in off-target organs or eliciting a humoral response after serial injections. These data suggest that this self-assembling, largely nontoxic platform may have broad utility for the specific delivery of siRNA to target and limit inflammatory processes for the treatment of a variety of diseases.

Authors

Hui-fang Zhou, Huimin Yan, Hua Pan, Kirk K. Hou, Antonina Akk, Luke E. Springer, Ying Hu, J. Stacy Allen, Samuel A. Wickline, Christine T.N. Pham

×

Figure 2

p5RHH siRNA nanoparticles target synovial macrophages.

Options: View larger image (or click on image) Download as PowerPoint
p5RHH siRNA nanoparticles target synovial macrophages.
Day 6 arthritic m...
Day 6 arthritic mice were injected with p5RHH-Cy3–labeled p5RHH-p65 siRNA nanoparticles (p65 NP) or free Cy3-labeled p65 siRNA (free p65). At 2.5 hours, mice were sacrificed and paws obtained for immunofluorescence study. In the mouse injected with p5RHH-p65 siRNA nanoparticles, Cy3 signal (red) colocalized (yellow in merged images) with synovial macrophages (Mac-3+, green). In contrast, only very low signal was detected in the synovial macrophages of the mouse injected with free p65 siRNA. DAPI (blue) stained nuclei. Some blood vessels (V) are outlined in white. Scale bar: 20 μm.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts