Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle
Jason K. Kim, … , Harvey F. Lodish, Gerald I. Shulman
Jason K. Kim, … , Harvey F. Lodish, Gerald I. Shulman
Published March 1, 2004
Citation Information: J Clin Invest. 2004;113(5):756-763. https://doi.org/10.1172/JCI18917.
View: Text | PDF
Categories: Article Metabolism

Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle

  • Text
  • PDF
Abstract

Insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally associated with increases in intramuscular fatty acid metabolites. Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA. To investigate the role of FATP1 in glucose homeostasis and in the pathogenesis of insulin resistance, we examined the effect of acute lipid infusion or chronic high-fat feeding on insulin action in FATP1 KO mice. Whole-body adiposity, adipose tissue expression of adiponectin, intramuscular fatty acid metabolites, and insulin sensitivity were not altered in FATP1 KO mice fed a regular chow diet. In contrast, FATP1 deletion protected the KO mice from fat-induced insulin resistance and intramuscular accumulation of fatty acyl-CoA without alteration in whole-body adiposity. These findings demonstrate an important role of intramuscular fatty acid metabolites in causing insulin resistance and suggest that FATP1 may be a novel therapeutic target for the treatment of insulin resistance and type 2 diabetes.

Authors

Jason K. Kim, Ruth E. Gimeno, Takamasa Higashimori, Hyo-Jeong Kim, Hyejeong Choi, Sandhya Punreddy, Robin L. Mozell, Guo Tan, Alain Stricker-Krongrad, David J. Hirsch, Jonathan J. Fillmore, Zhen-Xiang Liu, Jianying Dong, Gary Cline, Andreas Stahl, Harvey F. Lodish, Gerald I. Shulman

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Insulin-stimulated whole-body and skeletal muscle (gastrocnemius) glucos...
Insulin-stimulated whole-body and skeletal muscle (gastrocnemius) glucose metabolic flux in WT (gray bars) and FATP1 KO (black bars) mice with lipid infusion or high-fat feeding. (A) Insulin-stimulated whole-body glycolysis in vivo. (B) Insulin-stimulated whole-body glycogen plus lipid synthesis from glucose in vivo. (C) Insulin-stimulated skeletal muscle glycolysis in vivo. (D) Insulin-stimulated skeletal muscle glycogen synthesis in vivo. Values are means ± SE for 5–6 experiments. *P < 0.05 versus WT (control) mice.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts