Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease
Erik S. Barton, … , J. Denise Wetzel, Terence S. Dermody
Erik S. Barton, … , J. Denise Wetzel, Terence S. Dermody
Published June 15, 2003
Citation Information: J Clin Invest. 2003;111(12):1823-1833. https://doi.org/10.1172/JCI16303.
View: Text | PDF
Categories: Article Virology

Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease

  • Text
  • PDF
Abstract

Infection of neonatal mice with some reovirus strains produces a disease similar to infantile biliary atresia, but previous attempts to correlate reovirus infection with this disease have yielded conflicting results. We used isogenic reovirus strains T3SA– and T3SA+, which differ solely in the capacity to bind sialic acid as a coreceptor, to define the role of sialic acid in reovirus encephalitis and biliary tract infection in mice. Growth in the intestine was equivalent for both strains following peroral inoculation. However, T3SA+ spread more rapidly from the intestine to distant sites and replicated to higher titers in spleen, liver, and brain. Strikingly, mice infected with T3SA+ but not T3SA– developed steatorrhea and bilirubinemia. Liver tissue from mice infected with T3SA+ demonstrated intense inflammation focused at intrahepatic bile ducts, pathology analogous to that found in biliary atresia in humans, and high levels of T3SA+ antigen in bile duct epithelial cells. T3SA+ bound 100-fold more efficiently than T3SA– to human cholangiocarcinoma cells. These observations suggest that the carbohydrate-binding specificity of a virus can dramatically alter disease in the host and highlight the need for epidemiologic studies focusing on infection by sialic acid–binding reovirus strains as a possible contributor to the pathogenesis of neonatal biliary atresia.

Authors

Erik S. Barton, Bryan E. Youree, Daniel H. Ebert, J. Craig Forrest, Jodi L. Connolly, Tibor Valyi-Nagy, Kay Washington, J. Denise Wetzel, Terence S. Dermody

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Growth of T3SA– and T3SA+ in mice after peroral inoculation. ND4 Swiss W...
Growth of T3SA– and T3SA+ in mice after peroral inoculation. ND4 Swiss Webster mice, 2–3 days old, were inoculated perorally with 2.5 × 103 PFU of either T3SA– or T3SA+ in a volume of 50 μl. At the indicated times after inoculation, mice were euthanized and organs were collected. Organs were homogenized by sonication, and titers of virus present in homogenates were determined by plaque assay. Each bar represents the average viral titer from three mice. Error bars indicate SEM. *P < 0.05 by Student t test.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts