Integrins (alpha7beta1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy.

PH Vachon, H Xu, L Liu, F Loechel… - The Journal of …, 1997 - Am Soc Clin Investig
PH Vachon, H Xu, L Liu, F Loechel, Y Hayashi, K Arahata, JC Reed, UM Wewer, E Engvall
The Journal of clinical investigation, 1997Am Soc Clin Investig
Mutations in genes coding for dystrophin, for alpha, beta, gamma, and delta-sarcoglycans,
or for the alpha2 chain of the basement membrane component merosin (laminin-2/4) cause
various forms of muscular dystrophy. Analyses of integrins showed an abnormal expression
and localization of alpha7beta1 isoforms in myofibers of merosin-deficient human patients
and mice, but not in dystrophin-deficient or sarcoglycan-deficient humans and animals. It
was shown previously that skeletal muscle fibers require merosin for survival and function …
Mutations in genes coding for dystrophin, for alpha, beta, gamma, and delta-sarcoglycans, or for the alpha2 chain of the basement membrane component merosin (laminin-2/4) cause various forms of muscular dystrophy. Analyses of integrins showed an abnormal expression and localization of alpha7beta1 isoforms in myofibers of merosin-deficient human patients and mice, but not in dystrophin-deficient or sarcoglycan-deficient humans and animals. It was shown previously that skeletal muscle fibers require merosin for survival and function (Vachon, P.H., F. Loechel, H. Xu, U.M. Wewer, and E. Engvall. 1996. J. Cell Biol. 134:1483-1497). Correction of merosin deficiency in vitro through cell transfection with the merosin alpha2 chain restored the normal localization of alpha7beta1D integrins as well as myotube survival. Overexpression of the apoptosis-suppressing molecule Bcl-2 also promoted the survival of merosin-deficient myotubes, but did not restore a normal expression of alpha7beta1D integrins. Blocking of beta1 integrins in normal myotubes induced apoptosis and severely reduced their survival. These findings (a) identify alpha7beta1D integrins as the de facto receptors for merosin in skeletal muscle; (b) indicate a merosin dependence for the accurate expression and membrane localization of alpha7beta1D integrins in myofibers; (c) provide a molecular basis for the critical role of merosin in myofiber survival; and (d) add new insights to the pathogenesis of neuromuscular disorders.
The Journal of Clinical Investigation