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Supplemental Figure 1. Screening of epigenetic targets that affect the differentiation status of CD8" T cells. Flow cytometry

plots of CD45RA, CD62L and CCR7 expression in CD8" T cells treated with each chemical probe 14 days following initial
stimulation with aAPC/mOKT3.
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Supplemental Figure 2. Effects of epigenetic chemical probes on CD8* T cell differentiation. (A, B) Frequency of
CD45RA* CD62L" CCR7* (A) and CD45RA- CD62L* CCR7* cells (B) within CD8" T cell population cultured for 14 days in
the presence of each chemical probe. Inhibitors for p300 and BET proteins are indicated in bold. The error bars indicate the S.

D. of three technical replicates. The dotted lines indicate the mean values in DMSO control wells.
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Supplemental Figure 3. Effects of epigenetic targets on differentiation of CD45RO* memory T cells. (A, B) Peripheral

blood CD3* CD45RO* T cells were stimulated with aAPC/mOKT3 and subsequently treated with each epigenetic chemical

probe. The frequency (A) and absolute fold expansion (B) of CD45RA- CD62L*" CCR7" cells within the CD8* T cell population

14 days following initial stimulation are shown. Inhibitors for p300 and BET proteins are indicated in bold. The error bars

indicate the S. D. of three technical replicates. The dotted lines indicate the mean values in DMSO control wells.
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Supplemental Figure 4. Effects of JQ1 treatment on T cell division rate and viability. (A, B) CD3* T cells labeled
with CFSE were stimulated with aAPC/mOKT3 and cultured in the presence of JQ1 or (-)-JQ1 for 3 days. The average
mean fluorescence intensity of CFSE in CD4" and CD8" T cells (A) as well as the frequency of dead cells (B) were
evaluated by flow cytometry (n=5). Error bars depict the S. D.
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Supplemental Figure 5. Differentiation status of CD4* T cells treated with JQ1. (A, B) CD45RA* CD62L* CCR7* T
cells were stimulated weekly with aAPC/mOKT?3 and cultured in the presence or absence of JQ1. Representative FACS plots
showing expression of CD45RA, CD62L and CCR7 (A), and the frequency of CD45RA* CD62L* CCR7* and CD45RA-
CD62L" CCR7* cells within the CD4* T cell population 21 days following initial stimulation is shown (B; n=>5, paired t test).
(C) IL-2 secretion upon restimulation with aAPC/mOKT3 in CD4* T cells cultured for 14 days with or without JQ1 (n=7,
paired t test).
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Supplemental Figure 6. Differentially expressed genes between the Tqcy,/Tcy and Ty, phenotypes. Normalized intensity
values of the indicated genes from the published microarray data (GSE11057 and GSE23321) are shown.
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Supplemental Figure 7. Comparison of the functional properties of CD45RO" memory T cells treated with JQ1 or (-)-JQI1.
(A) CD3* CD45RO" cells were stimulated with aAPC/mOKT3 and cultured with JQ1 or (-)-JQ1 for 14 days. The frequency of
CD45RA- CD62L* CCR7" cells within the CD8" T cell population is shown (n=8, paired t test). (B, C) CD45RO™" T cells treated
with JQ1 or (-)-JQI for 14 days were restimulated with aAPC/mOKTS3, and the production of IL-2, IFN-y and TNF-a in CD8* T
cells was assessed with intracellular flow cytometry. The frequency of individual cytokine-secreting cells (B) and those
producing all three cytokines (C) is shown (n=4, paired t test). (D) Expression profiles of representative genes with differential
expression between the T, and Ty, phenotypes. The average expression levels in the JQ1-treated CD8" T cells relative to those

in (-)-JQ1-treated CD8* T cells are shown (n=4). Error bars indicate the S. D.
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Supplemental Figure 8. Effects of JQ1 on CD8" T cell differentiation in the absence of costimulatory signals. (A, B)
CD3* T cells were stimulated every week with plate-coated anti-CD3 mAbD (clone OKT3) and cultured in the presence or
absence of JQ1. Representative FACS plots (A) and the frequencies of CD45RA* CD62L" CCR7* and CD45RA- CD62L"*
CCR7* cells (B) within the CD8" T cell population 14 days following the initial stimulation (n=7, paired t test). (C, D)
Secretion levels of IL-2, IFN-y, and TNF-a were evaluated by intracellular flow cytometry in JQ1- and (-)-JQ1-treated
CDS8* T cells. The frequencies of each type of cytokine-secreting cells (C) and cells producing all three cytokines (D) are

shown (n=5, paired t test).
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Supplemental Figure 9. Differentiation of CD8* T cells upon antigen-specific T cell stimulation. CD3* T cells were
stimulated weekly with aAPC/A2 loaded with mutant MART1,, ;5 peptide in the presence of JQ1 or (-)-JQ1. The CD8*
A2/MART1 multimer* cells were analyzed for CD45RA, CD62L and CCR7 expression 21 days after initial stimulation.

Representative FACS plots of four independent experiments are shown.
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Supplemental Figure 10. Cytokine secretion by CAR-transduced T cells following restimulation with K562-CD19. JQ1- or
(-)-JQ1-treated CAR-T cells were stimulated with K562-CD19 in the absence of drugs. Five days later, they were restimulated
with K562-CD19, and cytokine secretion was evaluated by intracellular flow cytometry. Frequencies of each type of cytokine-

producing cell and cells secreting all three cytokines are shown (n=5, paired t test).
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Supplemental Figure 11. Treatment of CD19* acute lymphoblastic cell line NALM-6 with anti-CD19 CAR-transduced T
cells. (A) NSG mice were intravenously injected with NALM6-GL and, 14 days later, treated with CAR-transduced T cells
treated with JQ1 or (-)-JQ1. In vivo bioluminescent imaging of luciferase activity at the indicated time points following T cell
infusion is shown. (B) Phenotypic analysis for persistent CD8" CAR-T cells in the peripheral blood. Representative FACS plots
at day 7 following T cell infusion are shown.
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Supplemental Figure 12. Autopsy analysis of mice transplanted with JQ1- or (-)-JQ1-CAR-T cells. (A) Representative
FACS plots evaluating the persistence of NALM6-GL and CD19 expression in the spleen and bone marrow. (B)
Representative FACS plots showing the persistence of CAR-T cells in the spleen.
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Supplemental Figure 13. Cytokine secretion by A2/MARTI1-T cells following restimulation with aAPC/A2. JQ1- or (-)-
JQ1-treated A2/MART1-T cells were stimulated with aAPC/A2 loaded with MART1,, 55 peptide in the absence of drugs.
Five days later, the T cells were restimulated with aAPC/A2 with MART1,, 5, and cytokine secretion was evaluated by
intracellular flow cytometry. Frequencies of each type of cytokine-producing cell and cells secreting all three cytokines are

shown (n=4; paired t test).
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Supplemental Figure 14. Surface marker phenotypes of CD8" T cells with BATF knockdown. Surface expression of CD27,
CD28, and CD127 in the CD8" ANGFR* T cells transduced with control or siBATF 14 days following initial stimulation with
aAPC/mOKT3. Representative plots of the samples in Figure 7C are shown.
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Supplemental Figure 15. BATF knockdown by lentiviral shRNA. (A, B) CD3* T cells were transduced with lentiviral
shRNAs against BATF and stimulated with aAPC/mOKT3. Protein levels of BATF in the CD8* ZsGreen® T cell population
were analyzed by intracellular flow cytometry three days following stimulation. Representative FACS plots (A) and average
relative mean fluorescence intensity normalized to the control (B) (n=4; one-way ANOVA). Error bars indicate the S.D.
(C) Naive T cells were purified by magnetic selection, pre-treated with IL-7, and transduced with lentiviral shRNA targeting
BATF at day 5-8. Representative FACS plots of CD45RA, CD62L and CCR7 expression in the purified naive T cells and

after sShRNA transduction are shown.

Relative mean fluorescence

intensity of BATF

1.5+

1.0+

0.5

P<0.01

0.0-

P<0.01

—— shRNA-transduced T cells
= Untransduced control T cells



Supplemental Figure 16

A Control shBATF-1 ShBATF-2

40.8 15.1 37.2 237 35.0 257

CD62L

CD45R
51.6 75.6 79.7
19.6 7.8 45
|
E —_
CCR7
B Control ShBATF-1 SshBATF-2 C s,
2 &
o
4.68 6.32 w1373 8 N
c [ R
[} ! 8 + ° b A
) - c 10 . N
= ey + % . _.._ AA
g ga | N
N
cDs oN 579 °°
t ©
67.0 16.3 313 458 340 29.4 g Q
g o 0 T T T
[
— \ \ (L
o £ &© o\ o\
= O » K
| AN
N >
8 2T P<0.01
(&) g o 20 ——— P<0.01
© e EE—
CD45RA l v 8
& s N
8 +5 : AA
91.8 m 96.8 M 93.4 < 8 40 - o
I | | % o n N
66.6 81.0 61.3 a9 o
P
a
5 O 0 T T T
E < \ A rL
—_— = 9 / 5
O£ & o\ \3
CCR7 o
T O g\aP\ g\gh

Supplemental Figure 16. Memory T cell formation from naive T cells transduced with lentiviral sARNA against BATF. (A)
Naive T cells were transduced with shRNA against BATF following pretreatment with IL-7. They were subsequently stimulated
with aAPC/mOKTS3, and the expression profiles of CD45RA, CD62L and CCR7 within the CD8" ZsGreen" T cell population were
analyzed 10 days following stimulation. Representative FACS plots of the five experiments are shown. (B) Naive T cells
transduced with shRNA against BATF were transplanted into irradiated NSG mice. Mice were sacrificed 11 days following T cell
infusion, and the CD8* ZsGreen® cells engrafted in the spleen were analyzed. Representative FACS plots analyzing expression of
CD45RA, CD62L and CCR7 within the CD45* CD8" ZsGreen* population are shown. (C) Naive T cells with shRNA against
BATF were transplanted into irradiated NSG mice, as shown in Figure 7H. Mice were sacrificed 16 days following T cell
infusion, and the frequency of CD45RA"- CD62L* CCR7" cells within the ZsGreen™ CD8" T cell population in the spleen was
analyzed (n=6, one-way ANOVA).
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Supplemental Figure 17. Knockdown effects of genes suppressed by JQ1 on memory T cell differentiation. (A) Expression
of the candidate genes targeted by JQ1 was assessed by quantitative real-time PCR. Relative expression levels of the indicated
genes in JQ1-treated T cells relative to (-)-JQ1-treated cells (normalized to UBC) three days after stimulation with aAPC/mOKT3
are shown (n=4, one-sample test compared to one). Error bars indicate the S.D. ND, not detected within 45 cycles of qPCR. *
P<0.05, ** P<0.01. (B) CD3* T cells were retrovirally transduced with the control, siFOSL2, siID2, or siPRDM1 and ANGFR.
Expression of each target gene compared with the control was assessed by quantitative PCR (n=4, one sample t test compared to
one). Error bars indicate the S.D. * P<0.05, ** P<0.01. (C) CD3" T cells were stimulated with aAPC/mOKT3 and transduced
with control, siFOSL2, siID2, or siPRDM1, and ANGFR. The frequency of CD45RA"- CD62L" CCR7" cells within the ANGFR*
CD8* T cell population 14 days after initial stimulation is shown (n=5, paired ANOVA).
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Supplemental Figure 18. Phosphorylation of ribosomal protein S6 kinase (S6K) is decreased in JQ1-treated T cells. (A,

B) CD3* T cells were stimulated with aAPC/mOKT3 at an E:T ratio of 3:1 and treated with JQ1 or (-)-JQ1 in the presence of

IL-2 and IL-15. Phosphorylation of the indicated proteins in CD8" T cell population was analyzed 5 days after stimulation.

Representative FACS plots (A) and relative mean fluorescence intensity normalized to freshly isolated CD8* T cells (B) (n=4;

unpaired t test). (C, D) CD3* T cells were stimulated with aAPC/mOKT3 and transduced with lentiviral ShRNA against

BATF. The shRNA-transduced T cells were rested in cytokine-free media and then restimulated with aAPC/mOKTS3.

Phosphorylation of S6K in the ZsGreen® CD8" T cell population was quantified by intracellular flow cytometry.

Representative FACS plots (C) and relative mean fluorescence intensity normalized to the control plasmid-transduced cells

(D) (n=4; one-way ANOVA).
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Supplemental Figure 19. Phenotypic analysis of CAR-T cells after adoptive transfer. C646- or
DMSO-treated CAR-T cells were infused into NSG mice transplanted with NALM6-GL. The frequency
of CD45RA™- CD62L" CCR7" T cells within the CD8*" CAR™ T cell population was analyzed (n=10,
unpaired t test).



Supplemental Table 1. Epigenetic chemical probes with defined targets.

Probe Target Tested dose (uM) | References Probe Target Tested dose (UM) | References
Histone-modifying enzymes Histone readers

UNC0638 G9a/GLP 0.1 1 JQ1 BET Bromodomain | 0.15 15

UNC0642 G9a/GLP 0.1 2 PFI-1 BET Bromodomain | 1 16

A-366 G9a/GLP 0.5 3 Bromosporine | pan-Bromodomain 1

SGC0946 DOTIL 0.5 4 GSK2801 BAZ2A/B 1 17

UNC1999 EZH2 0.2 5 BAZ2-ICR BAZ2B/A 1 18

GSK343 EZH2 0.5 6 OF-1 BRPF1-3 1

GSK-J4 IMID3/UTX 1 7 Ni-57 BRPF1-3 0.5

OICR-9429 | WDR5 1 3 PFI-4 BRPF1B 0.25

PFI-2 SETD7 1 9 PFI-3 SMARCA4 1 19

GSK-LSDI LSDI 1 10 CI-994 HDAC 1

UNCI215 L3MBTL3 1 11 LAQS24 HDAC 0.01 20

SGC-CBP30 | CREBBP/EP300 | 0.2 12 VPA HDAC 400

I-CBP112 CREBBP/EP300 | ! 13 Other targets

C646 EP300 10 14 Olaparib PARP 1
10X2 HIFla 50 21
GSK484 PAD-4 0.5 22
LLY-507 SMYD2 1 23
Decitabine DNMT 0.05




Supplemental Table 2. Detailed information of the mice transplanted with CAR-T cells.

Na’tl%;\gfy'?%at CAR-T cell at autopsy (%)

Probe Overall T cells in the bone marrow T cells in the spleen Signs of

survival | Bone Spleen CAR' in CAR" in CAR" in CAR in GVHD
Ao CD4" | CD8™ | opgeeelts | cD8* Teells | CP% | P8 | cD4* Teells | CD8* T cells
1 85 356 252 202 | 046 0.53 1.56 725 | 093 0.41 2 fur loss and

red skin
2 64 67.8 4238 056 | 0.08 3.60 6.56 038 | 008 1.23 6.92 none
3 65 66 61.8 006 | 0.06 2.60 755 0.11 | 035 234 5.76 none
4 59 24.6 14.1 105 | 0.06 3.07 8.7 235 | 0.03 0.00 2.13 none

3 JQ1 (algil/e) NA fu;el(;)ssifnn ‘
6 (algil/e) NA none
7 45 66.1 21.6 | 040 | 002 1.36 4 035 | 0.02 0.76 0 none
8 (algixlze) NA none
9 33 732 352 005 | 002 6.12 0.00 0.06 | 0.05 272 5.17 none
10 46 45.1 33 001 | 006 0.00 1.79 0.00 | 0.01 0.00 0 none
1 40 82.3 224 | 002 | 005 0.00 0 0.53 1.78 0.89 0.484 none
2 41 84.2 485 006 | 023 2.33 6.44 030 | 245 0.86 0.649 none
3 37 83.4 486 | 004 | 023 4.00 276 0.10 | 1.00 0.00 0.813 none
4 54 55.8 384 | 000 | 0.00 NA NA 000 | 002 NA 0 none
5 61 284 16.8 007 | 002 271 123 079 | 021 0.89 339 none
6 | Y 46 82.6 453 021 | 027 1.32 2.11 028 | 154 0.63 0.794 none
7 36 729 222 002 | 0.00 5.88 NA 0.13 | 001 732 0 none
8 33 68.3 215 0.01 0.02 0.00 8.7 013 | 012 2.20 6.71 none
9 40 60.2 21.1 003 | 004 0.00 0 059 | 049 1.26 276 none
10 34 845 37.7 007 | 019 2.94 225 0.13 1.08 0.00 121 none
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