

Supplemental Figure 1. Validation of syngenic/isogenic system for myogenic memory assessment. (A) Summary of experimental plan and procedures used for the murine iPSC study in syngenic/isogenic conditions. Reprogramming factors were of murine origin and transduced by means of retroviral vectors. (B) After FACS isolation, murine MAB lines resulted positive to alkaline phosphatase (AP) staining, unlike isogenic fibroblasts. Cytometry profiling at passage 3 showed that fibroblasts were CD90⁺ and slightly CD140a⁺, whereas MABs resulted CD140a⁺/CD140b⁺/CD44⁺/Sca1⁺, partially CD34⁺/CD90⁺, and CD56⁻/CD45⁻ (pan-isotype controls, light grey; stained samples, dark grey; depicted are data from #1/2/3 lines for each cell type). (C) Isogenic f- and MAB-iPSCs showed comparable morphology and expression pattern of pluripotency markers. G-banded chromosome spreads and related karyograms showed \geq 70% euploidy and absence of specific aneuploidies in clones of murine f- and MAB-iPSCs at passage 3 (n≥10 spreads per iPSC clone). qPCR-based quantification indicated comparable levels of pluripotency marker expression among f- or MAB-iPSC clones at passage 3, when compared to R1 ESCs. AU, arbitrary units; error bars, standard deviation. Depicted in C are all data from fand MAB-iPSCs from individual #2, results from individuals #1/3 are analogous. (D) Teratomas were obtained at 4-6 weeks after subcutaneous injection of isogenic f- and MAB-iPSCs in Rag2*null/yc-null* immunodeficient mice and displayed endodermal (alpha-fetoprotein⁺, αFP^+), ectodermal (beta-III tubulin⁺, Tuj1⁺), and mesodermal (sarcomeric alpha-actinin⁺, sarc aAct⁺) derivatives, albeit the immature muscle patches were dramatically more present in MAB-iPSCderived teratomas, as also confirmed by WB and Gapdh-normalized densitometry analysis (*, P<0.05, n=3/iPSC type, Mann Whitney U test; AU, arbitrary units; error bars, standard deviation. Scale bars, approximately 100um.

Supplemental Figure 2. Similar contribution of f- and MAB-iPSCs to endoderm and ectoderm derivatives in chimeric adult mice. GFP^+ f- and MAB-iPSCs contributed to a comparable extent to hepatocytes (albumin⁺) and bile duct cells (keratin7⁺) in uninjured (right/median) and regenerated liver lobes (left) (A-C), and to inner/outer root sheets of hair follicles in uninjured and wound-injured skin sites (D-F) of adult chimeric mice at 4 weeks post-injuries. n=4mice/iPSC type; *, P<0.05 vs uninj f-iPSC mice; **, P<0.05 vs inj f-iPSC mice; Kruskal-Wallis and Mann Whitney U test. Error bars, standard deviation; scale bars, approximately 100µm.

Supplemental Figure 3. Myogenic memory is durable in iPSC-derived progenitors and is traceable in gene expression pattern over time. (A) Murine f- and MAB-MiPs resulted CD140a⁺/CD140b⁺/CD44⁺/Sca1⁺/CD117⁺, partially CD34⁺/CD309⁺, and CD56⁻/CD146⁻/CD45⁻ at cytometry-based profiling at passage 1 (pan-isotype controls, dotted lines; stained samples, full lines; depicted are data from f- (vellow) and MAB-MiPs (light blue)). Once in culture under proliferative conditions, f- and MAB-MiPs displayed comparable growth curves (B). (C) In vitro MiP differentiation to cardiomyocyte-like cells displayed comparable rates of cTnI⁺/Cx43⁺ binucleated cells. (D) After transient transfection of f- and MAB-MiPs with Pax3-Pax7 overexpressing plasmids and subsequent serum starvation, MAB-MiPs presented a higher number of Myogenin⁺ (Myog⁺) nuclei at day 5, and of MyHC⁺ myotubes at day 10, as compared to syngenic f-MiPs, as also quantified by fusion index analysis; *, P<0.05, n=4/MiP type; Mann-Whitney U test. Scale bars, approximately 100µm. (E) Applying the differentiation conditions used to differentiate iPSCs towards MiPs, qPCR analysis over time showed a progressive decline of pluripotency marker expression (Nanog, Oct4) in both f- and MAB-iPSCs, with no significant difference (n=3/iPSC type; 2way ANOVA test). (F) Mesodermal marker expression (Brachyury, Meox1 and Mix11) appeared peaking at day 9 in both f- and MAB-iPSCs. Brachyury and Meox1 trends were not significantly different, whereas Mixl1 trend over time in MAB-iPSCs was significantly different from f-iPSCs (*, P<0.05 for cells/stages; n=3/iPSC type; 2way ANOVA test). Interestingly, when comparing sorted f- and MAB-MiPs, all three markers resulted slightly but significantly upregulated in MAB-MiPs, as compared to f-MiPs (**, P<0.05; n=3/MiP type; unpaired t-test). (G) Expression trends of skeletal muscle markers (*Pax3*, *Pax7* and *Desmin*) appeared significantly different between differentiating f- and MAB-iPSCs (*, P<0.05 for cells/stages; n=3/iPSC type; 2way ANOVA test). Consistently, when comparing sorted f- and MAB-MiPs, all three markers resulted highly upregulated in MAB-MiPs, as compared to f-MiPs (**, P<0.05; n=3/MiP type; unpaired t-test). (H) Differently from the skeletal myogenic markers, expression trends of cardiomyogenic markers (Tbx5, Gata4 and Flk1) did not show significant differences between differentiating f- and MAB-iPSCs (n=3/iPSC type; 2way ANOVA test), or between sorted f- and MAB-MiPs (n=3/MiP type; unpaired t-test). AU, arbitrary units; error bars, standard deviation.

	fibroblasts	MABs	f-iPSCs	MAB-iPSCs	f-MiPs	MAB-MiPs
Nanog	#3 #2 #1		· · ·	.: :. :.:		
Oct4	#3 #2 #1 #3 #2 #1					
Brachyury	#3 #2 #1	· · · :	terrette Antri Angele Canadar	· · ·	2000000 20000000 20000000	
Meox1	#3 #2 #1					
MixI1	# 54.000 and 54.0000 and 54.00000 and 54.00000 and 54.0000 and 54.0000 and 54.00000 and 54.000000 and 54.00000000 and 54.000000000000000000000000000000000000		: / : /			
Pax7		· · · · · ·		· · · · ·	474115 0495 SG2545489 SA-7454493	
Рах3	#3 #2 #1	· · · ·		······································		
Desm		· · · · ·	ineralesistea L'Explosedate Pressonates		efiinste Manavive Sadatsval	
Tbx5	#3 #2 #1				: :	
Gata4	#3 #2 #1 #6		." "			
FIk1						rianing in States in This and real

Supplemental Figure 4 – CpG methylation data, related to analyses presented in Figure 4 and Supplemental Figures 5-6. Representative CpG methylation data are depicted as dots, each representing a CpG in 5'->3' orientation. White dots depict non-methylated CpG, while black dots depict methylated CpGs. Each dot row represents a CpG island sequence read. Reported in this visual table are 5 reads per cell clone per cell type, each cell clone isolated from a different donor (#1, #2, #3).

Supplemental Figure 5. Complementary data of DNA methylation and histone mark enrichment. (A) the pluripotency marker *Oct4* presented stage-specific changes in epigenetic cues, with no progeny-related bias (Q1=ns). (B-C) The mesodermal markers *Meox1* and *Mixl1* presented a complex pattern of epigenetic biases. Meox1 showed progeny-related biases only in DNA methylation, as inherited at iPSC stage (§) and as remodeled at MiP stage (\$). Conversely, Mixl1 presented remodeled biases (\$) at both stages only in histone mark enrichment. (D-E) The skeletal myogenesis markers *Pax3* and *Desm* presented inherited biases in both DNA methylation and histone marks at both iPSC (§) and MiP (§) stages. MAB-derived cells showed a durable bias in lower methylation and permissive/activating histone marks. *, P<0.05, n=3/cell pool; for DNA methylation analysis, 1way ANOVA test with Bonferroni multi-comparison; for histone mark analysis, 2way ANOVA test with Bonferroni multi-comparison. All analyses included data from isogenic clones from three syngenic individuals.

Supplemental Figure 6. Complementary data of DNA methylation and histone mark enrichment, and effects of pulse of Brachyury/Pax7 on MiP myogenic propensity.

(A-B) The cardiac myogenesis markers *Gata4* and *Flk1* presented stage-specific shifts in methylation and histone marks, with no significant progeny-related bias (Q1=ns). Both MiP types presented low methylation levels and enrichment in H3K27ac. *, P<0.05, n=3/cell pool; for DNA methylation analysis, 1way ANOVA test with Bonferroni multi-comparison; for histone mark analysis, 2way ANOVA test with Bonferroni multi-comparison. All analyses included data from isogenic clones from three syngenic individuals. (C) Transient pulse of Brachyury and Pax7 in f-MiPs induced upregulation levels comparable to control (ctrl) MAB-MiPs at 48 hours post-transfection. Data are depicted as fold change vs ctrl f-MiPs; AU, arbitrary units; error bars, standard deviation. (D-E) Combined pulse of *Brachyury* and *Pax7* induced levels of skeletal muscle differentiation in transfected f-MiPs comparable to ctrl MAB-MiPs, as indicated by increase in GFP⁺ myotube rate in co-culture with myoblasts (D, arrows) and in myotube production (quantitated as fusion index, i.e. % of nuclei in MyHC⁺ myocytes) after skeletal muscle differentiation (E). *, P<0.05; n=3/transfection condition; 1way ANOVA with Bonferroni multi-comparison; error bars, standard deviation.

Supplemental Figure 7. Complementary functional and histologic analyses of murine MiPdriven regeneration. (A upper row) Validation of the dystrophic cardiomyopathy by means of 3D echocardiography. Sgcb-null mice showed significant decrease in fractional shortening, increase in ventricular volume and reduced cardiac output, when compared to wt controls (*, P<0.05; n=4/group; Mann-Whitney U test). (A, lower row) Validation of impaired mobility and creatine kinase release in the serum. Sgcb-null mice performed significantly worse at the treadmill and presented higher serum CK levels, when compared to wt controls (*, P<0.05; n=4/group; Mann-Whitney U test). Each data point refers to one animal, bars depict average values. (B) As shown by Masson's trichromic staining at 4 and 8 weeks post-injection, fibrotic scars and/or infiltrations (arrowheads) were comparably reduced in f- and MAB-MiP-treated hearts as compared to sham (upper panels), whereas they appeared consistently more reduced in MAB-MiP- than in f-MiP-treated quadriceps muscles. N=8/group; scale bar, approximately 100um. (C) 3D echocardiography analyses at baseline show no significant differences among randomly-distributed mice cohorts; n=8mice/group, Kruskal-Wallis and Mann-Whitney tests. (D) According to functional assessment at 8 weeks post-injection, MiP-induced beneficial effects on cardiac functionality appeared durable and comparable between f- and MAB-MiPs. Also, treadmill assay at 8 weeks post-injection evidenced a similar situation to 4 weeks post-injection, i.e. f-MiP injection induced amelioration of the hindlimb mobility, yet this effect was significantly more pronounced in MAB-MiP-injected mice. In addition, luminometric analysis of serum CK levels indicated a significant downregulation in MiP-treated mice and, similarly to results at 4 weeks post-injection, MAB-MiP-injected mice showed significantly decreased levels when compared to f-MiP-treated mice. N=5mice/group; *, P<0.05 vs sham; **, P<0.05 vs sham and f-MiPs; Kruskal-Wallis and Mann-Whitney tests. Each data point refers to one animal, bars depict average values.

1cm

GFP (stereo)

MyHC/GFP

Supplemental Figure 8. Myogenic memory in isogenic canine iPSC system. (A) Summary of experimental plan and procedures used for the canine iPSC study in isogenic conditions. Reprogramming factors were of human origin and transduced by means of retroviral vectors. (B) Once sorted for AP and expanded on collagen, WT and GRMD primary MAB populations appeared homogeneous for AP expression and, under serum starvation, spontaneously differentiated into occasional MyHC⁺ myotubes, consistently with previous reports. (C) After picking and stabilization on iMEFs, canine iPSC clones at passage 3 showed hESC-like morphology and resulted homogeneously positive to AP, OCT4, SOX2, LIN28, and SSEA4 staining. In addition, chromosome spread counts indicated that all screened clones resulted euploid (78 chromosomes). (D) GFP⁺ WT and GRMD iPSCs produced teratomas in analogous conditions to murine iPSCs. However, despite the presence of derivatives from all three germ layers (data not shown), MAB-iPSCs (both WT and GRMD) consistently produced more and larger immature muscle patches as compared to isogenic f-iPSC-teratomas; n=3/iPSC type.

Supplemental Figure 9. Canine MiP isolation and characterization. (A) Morphology of canine MiPs under proliferative conditions is similar to that of murine MiPs. (B) Regardless of genotype or type, canine MiPs appeared homogeneously CD140a⁺/CD140b⁺/CD44⁺/CD45⁻, and partially CD31⁺/CD34⁺/CD146⁺/CD309⁺. Pan-isotype controls, dotted line; stained samples, thick lines; depicted are data from #1/2/3 lines for each cell type; quantifications (%) of reported cytometer data are reported as average values. (C) qPCR analyses showed that markers of mesodermal commitment, skeletal and cardiac myogenesis were upregulated in WT f- and MAB-MiPs. Interestingly, similarly to the results obtained in murine MiPs, *BRACHYURY*, *MEOX1, PAX3, PAX7* and *DESMIN* appeared upregulated in MAB-MiPs, when compared to f-MiPs, whereas the cardiomyogenic markers did not show significant biases in expression. In addition, GRMD MiPs showed similar patterns in gene expression (data not shown). *, P<0.05; n=3/cell pool; unpaired t-test. AU, arbitrary units; error bars, standard deviation. (D) When compared to isogenic f-MiP controls, both WT and GRMD GFP⁺ MAB-MiPs produced a higher number of GFP-chimeric myotubes (arrows) in co-culture with myoblasts; n=4/MiP type. Scale bar, approximately 100µm.

Supplemental Figure 10. TALEN-based GRMD correction in canine MAB-iPSCs. (A) 3D echocardiography analyses at baseline, i.e. prior to CAL and ctx injections, showed no significant differences among randomly-distributed mice cohorts; n=7mice/group, Kruskal-Wallis and Mann-Whitney tests. (B) Scheme of the TALEN vector design for the canine DYSTROPHIN locus, showing the sites of mutation correction and silent mutation integration, and the homology sequences recognized by the TALENs. (right panels) SphI assay on the specific amplicon encompassing the two homology sequences yielded two bands in the donor matrix (200bp and 80bp) and one undigested band (280bp) in the non-corrected cells. After electroporation and expansion, three bands, as expected, characterized the heterogeneous iPSC pool. After single cell-cloning, corrected GRMD iPSCs showed two bands, similarly to the donor matrix. (lower panels) Sequencing-based confirmation of the correction was performed by means of 40 independent clonal sequencing assays from the corrected GRMD iPSCs, showing homogeneous levels of mutation correction, SphI site integration, and reading frame maintenance (depicted is a ClustalW2 alignment of the sequences). (C) Corrected GRMD iPSCs maintained the characteristic features of morphology, pluripotency marker expression and euploidy.

Supplemental Figure 11. Characterization of dystrophic immunodeficient mice and of isogenic human iPSCs. (A) Sgcb-null/Rag2-null/yc-null presented homozygous mutated alleles on all three loci and showed fibrosis, necrosis and dystrophic pathological features in cardiac and skeletal muscles at 3 months of age. (B) Isogenic human cells were differentiated through AP expression and myogenic markers of early and late myogenic differentiation during differentiation in serum starvation; n=3donors/cell type. (C) Isogenic human f- and MAB-iPSCs shared comparable features of hESC-like morphology and homogenous expression of pluripotency marker expression. Also, f- and MAB-iPSC clones from three independent reprogramming events appeared euploid and expressed pluripotency markers at comparable levels to hESCs (H9) grown in the same conditions. AU, arbitrary units; error bars, standard deviation; n=3donors/iPSC type. (D) Quantification of immunofluorescence staining fields (representative pictures are shown on the left) of teratomas obtained from human isogenic f- and MAB-iPSCs showed a significant increase in the immature muscle patches (SARC α ACT⁺) and decrease in endodermal glands and neuroectoderm formations (αFP^+ and TUJ^+ respectively). *, P<0.05; n=4 teratomas/iPSC type; Mann-Whitney U test. (E) After over-expression pulse of *PAX7/MEF2C* by means of transfection, hMAB-iPSCs exhibited a significantly higher capacity of myogenic differentiation when compared to isogenic f-iPSCs, as shown by fusion index quantification at day 7 and 14 post-transfection. *, P<0.05; n=6/iPSC type; unpaired t-test. Scale bars, approximately 100um.

Supplemental Videos (1-4) – Brightfield and fluorescence videos of GFP⁺ isogenic murine f-(Suppl Videos 1-2) and MAB-MiPs (Suppl Videos 3-4) in co-culture with primary cultures of neonatal rat cardiomyocytes. Magnification, 20X.

List of primers

mm, *Mus musculus*. *cf*, *Canis familiaris*. *hs*, *Homo sapiens*. Fw, forward primer. Rev, reverse primer. All primer sequences are indicated in 5'-3' orientation.

qPCR primers:

mmKlf4 Fw, AACTACCCTCCTTTCCTGCCAGA mmKlf4 Rev, ATAGTCACAAGTGTGGGTGGCTGT mmSox2 Fw, CACATGAAGGAGCACCCGGATTAT mmSox2 Rev, TCCGGGAAGCGTGTACTTATCCTT mmOct4 Fw, TGGAGGAAGCCGACAACAATGAGA mmOct4 Rev, TGGCGATGTGAGTGATCTGCTGTA *mmcMyc* Fw, TAGTGTGTGTGTTCCAGCTACTGC mmcMvc Rev. AACGTCTCTTCTCTACGGTGACCA mmRex1 Fw, GGCCAGTCCAGAATACCAGA mmRex1 Rev, GAACTCGCTTCCAGAACCTG mmLin28 Fw, CAGAAGCGAAGATCCAAAGG mmLin28 Rev, CAGGCTTTCCCTGAGAACTG mmGdf3 Fw, ACCTTTCCAAGATGGCTCCT mmGdf3 Rev, CCTGAACCACAGACAGAGCA mmDax1 Fw, TCCAGGCCATCAAGAGTTTC mmDax1 Rev, ATCTGCTGGGTTCTCCACTG mmNanog Fw, ACAAGGGTCTGCTACTGAGATGCT mmNanog Rev, AGAACACAGTCCGCATCTTCTGCT mmRunx1 Fw. AACAAGACCCTGCCCATCGCTTT mmRunx1 Rev, AACCTGAGGTCGTTGAATCTCGCT mmBrach Fw, TGTGACCAAGAACGGCAG mmBrach Rev, TCCCCGTTCACATATTTCCAG mmMeox1 Fw, AGGATTGCATGGTACTTGGG mmMeox1 Rev, CTCTCCTTCCGGGCTTTG mmMixl1 Fw, GTACCCAGACATCCACTTGC mmMixl1 Rev, TGAGGATAAGGGCTGAAATGAC mmGata4 Fw, TTTCTGGGAAACTGGAGCTG mmGata4 Rev, AGTCCTTGCTTTCTGCCTG mmFlk1 Fw, CTGTCGCTCTGTGGTTCTG mmFlk1 Rev, CTGTCCCCTGCAAGTAATCTG mmDesm Fw, GAGCGTGACAACCTGATAGAC mmDesm Rev. GTCAATACGAGCTAGAGTGGC mmPdgfb Fw, TCCTCTCTGCTGCTACCTG mmPdgfb Rev, CAGCCCCATCTTCATCTACG mmTbx5 Fw, CTCCGGCTTTCCTGCTAAG mmTbx5 Rev. CCAAAGCCCTCATCTGTATCG mmPax3 Fw, GGCAGAATTACCCACGCAG mmPax3 Rev, TCTTGTGGCGGATATGGTTG mmPax7 Fw, CAGAACTACCCGCGCAC mmPax7 Rev, ACTATCTTGTGACGGATGTGG

mmNkx25 Fw, AAGTGCTCTCCTGCTTTCC mmNkx25 Rev, CGTCTCGGCTTTGTCCAG cfBRACHYURY Fw, ACCGCTGGAAGTACGTGAAC cfBRACHYURY Rev, TGAGCTTGTTGGTGAGCTTG cfNKX25 Fw, CCACCAACAACAACTTCGTG cfNKX25 Rev, CGGGAGTGAATGTGAAATCC cfFLK1 Fw, GATCGGTGAGAAATCCCTGA cfFLK1 Rev, CCTGGAAGTCATCCACGTTT cfTBX5 Fw, GCACAAATACCAGCCCAGAT cfTBX5 Rev, GGGAACCACGGGATATTCTT cfGATA4 Fw, AAGCTCCATGGTGTTCCAAG cfGATA4 Rev, GCATCTCTTCACTGCTGCTG cfDESMIN Fw, ATTCCCTGATGAGGCAGATG cfDESMIN Rev, AGGGCCATCTTGACATTGAG cfPAX7 Fw, AAGAAAGCCAAGCACAGCAT cfPAX7 Rev, AAGGCCTTCTCCAGCTCTTC cfPAX3 Fw, CCGAGTCCAGGTTTGGTTTA cfPAX3 Rev, TGGGCTGGTAAGATGTCTCC cfMEOX1 Fw, CATCCAGACGGAAAAAGGAG cfMEOX1 Rev, TCCACTTCATCCTTCGGTTC cfDYS Fw, TTTCTGGCATATTAAAGATAGGACTTC cfDYS Rev, GACCAAGAAATTTCAAAGGTCTCTA hsOCT4 Fw. CGAGCAATTTGCCAAGCTCCTGAA hsOCT4 Rev, GCCGCAGCTTACACATGTTCTTGA hsSOX2 Fw, CACATGAAGGAGCACCCGGATTAT hsSOX2 Rev, GTTCATGTGCGCGTAACTGTCCAT hsKLF4 Fw, AATTACCCATCCTTCCTGCCCGAT hsKLF4 Rev, TAATCACAAGTGTGGGTGGCGGT hsCMYC Fw, TCCTCGGATTCTCTGCTCTCCT hsCMYC Rev, AGAAGGTGATCCAGACTCTGACCT hsNANOG Fw, TGGCCGAAGAATAGCAATGGTGTG hsNANOG Rev, TTCCAGGTCTGGTTGCTCCACATT hsTERT Fw, GAACATGCGTCGCAAACTCTTTGG hsTERT Rev, CAGCACACATGCGTGAAACCTGTA hsREX1 Fw, TGGAGGAATACCTGGCATTGACCT hsREX1 Rev, AGCGATTGCGCTCAGACTGTCATA hsGDF3 Fw, ACACCTGTGCCAGACTAAGATGCT hsGDF3 Rev, TGACGGTGGCAGAGGTTCTTACAA mm/cfPGK Fw, , CAAAATGTCGCTTTCCAACAAG mm/cfPGK Rev, , AACGTTGAAGTCCACCCTCATC hsPGK Fw, TGCCTGTTGACTTTGTCACTGCTG hsPGK Rev, AGCCTCAGCATACTTCTTGCTGCT.

Bisulphite sequencing primers:

Brach Fw, TTTTATTGAATTATTTTTTGTTTTGTTTGTTA Brach Rev, CCCAAATATAACAACTTTAAAAACAC Meox1 Fw, TGAATTTGGGAGGTTTTTTTATAAA Meox1 Rev. CCTCTAAATCTAACCCCATCTAACC Mixl1 Fw, TGATTTTTTAGTATTTTTATTGGAA Mixll Rev, AAAAACAACTACTCCCAACCATAC Gata4 Fw, TTATTTGGTAAGAATTTTGTGTAGTT Gata4 Rev, ACCTCAATTTTCTCTCTCTCTAAAAC Flk1 Fw, AAAGAGTGGGTTTTTTTTTTTTATTAGAGG Flk1 Rev, TCTTTCTACCCTAAATCCTCAAAAC Desmin Fw, TTAGGAGGGTTATAAATAGTGTAGATAGTT Desmin Rev, TAAACTCTTACAACTCCACCTTCTC Tbx5 Fw, TTTTTGGGGGGTGTAAGAGTAGAGTA *Tbx5* Rev. CAAAATACAAAACAAAACTAAAATCC Pax3 Fw, TTTTAGTTGGGGGTTATTGGTAAAG Pax3 Rev, CACTAACTCTTACCACCCAAACTAC Pax7 Fw, TAAGGAAGTTTAAATAAATAAATAATATTTTAA Pax7 Rev, AACTAACCCCCTTTCCTACTCATAA Oct4 Fw, GGTTTTTTAGAGGATGGTTGAGTG Oct4 Rev, TCCAACCCTACTAACCCATCACC Nanog Fw, GATTTTGTAGGTGGGATTAATTGTGAATTT Nanog Rev, ACCAAAAAAAACCCACACTCATATCAATATA.

ChIP-qPCR primers:

Brach Fw, CGAGAGGCAATAAACCAACTG Brach Rev, TGGACTTTGACGGTGGATG Meox1 Fw, TGGAGAACACAAGACGCTG Meox1 Rev, AGTTGAAGGTTAGGAAGTGGC Mixll Fw, AAGACGAGCTCCAGCAAC Mixl1 Rev. CCAAACCGCGACTCCAG Gata4 Fw, CAGTGCAAAAGCAACCCAG Gata4 Rev, ATTTTCCTGAGATCCCCACG Flk1 Fw. GAAGTCACAGAGGCGGTATG Flk1 Rev, TGAAAGCCCAGACTGTGTC Desm Fw, AGGGCTACAAATAGTGCAGAC Desm Rev, TGGCTGGACGAGTAGGC Tbx5 Fw. CTGTTCCTCTAAGCCGTTCTG Tbx5 Rev, ACCACTAGAGCCTCCCAG Pax3 Fw, AGACACGCGCTGATTGG Pax3 Rev, GCCTCTCCTAGTTTCAACCTG Pax7 Fw, CTCTCAGCGCCTCTTTCTG Pax7 Rev, CTCGCTTTTCCTCTTGTGTTC Oct4 Fw. ACTGGTTTGTGAGGTGTCC Oct4 Rev, CTATCTGCCTGTGTCTTCCAG

Nanog Fw, ACCTACCCTTTAAATCTATCGCC *Nanog* Rev, TCCCACAGAAAGAGCAAGAC.