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The electrical impulses that dictate the rhythm of the heartbeat in normal situations and during exercise or stress are
initiated by a small number of sinus node pacemaker cells. Senescence and dysfunction of the sinus node affects many
people later in life, causing physiologically inappropriate heart rates, but the underlying mechanisms are not well
understood. In this issue of the JCI, Froese and colleagues show that deficiency in either Popeye domain containing 1
(Popdc1) or Popdc2 leads to sinus node dysfunction under stressed conditions in aged mice. The mechanism reported to
underlie the effects of Popdc1/2 deficiency in mice may cause the stress-induced sinus node dysfunction found in many
aged individuals and may point to new strategies for therapeutic intervention.
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fetal hematopoietic and TMD cells (23). 
Such experimental tools would allow sys-
tematic evaluation of human cT21 in the 
correct developmental context.

Whether DYRK1A is functioning 
through the NFAT pathway or another 
pathway in DS-AMKL, its inhibition may 
have therapeutic benefit. Malinge et al. 
provide a proof of concept that DYRK1A 
inhibitors may be clinically useful in the 
context of DS-AMKL by demonstrating 
that harmine, a small-molecule inhibitor 
of DYRK1A kinase activity, can inhibit the 
growth of megakaryoblastic leukemic cell 
lines with trisomy 21 (2). Thus, DYRK1A 
inhibitors may be a specific targeted thera-
py for DS-AMKL.
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The rhythmic forward f low of blood 
through the major arterial vessels is con-
trolled by coordinated electrical activa-
tion of the heart. Electrical activation in 

the heart originates in the sinus node, 
which is located in the right atrium near 
the entrance of the superior vena cava (1). 
Sinus node cells differ from normal atrial 
and ventricular cardiomyocytes in many 
respects. They develop, during embryo-
genesis, from precursor cells distinct from 
those that give rise to cardiomyocytes in 
the remainder of the heart. Moreover, 
throughout life, they maintain a molecular 
program that is unique and quantitatively 
different from that of normal atrial and 
ventricular cardiomyocytes (2). This molec-
ular program endows them with unique 
characteristics: for example, unlike atrial 
and ventricular cardiomyocytes, sinus node 
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cells do not have a stable resting membrane 
potential. In addition, the architecture of 
the sinus node is much more complex than 
that of the atrial and ventricular walls, 
involving numerous different cell types (3). 
The presence of particular gap junctions 
and ion channels in combination with the 
structure of the sinus node generates an 
electrophysiological environment for effec-
tive pacemaking (4).

Because the sinus node is highly inner-
vated, and its intrinsic depolarization 
rate is also modulated by neurohumoral 

input, the rate at which the heart beats 
can be adjusted to physiologic require-
ments — it is reduced during times of rest 
and increased during exercise and times of 
stress. However, the prevalence of arrhyth-
mias as a result of sinus node dysfunction, 
which affects millions of individuals later 
in life, indicates that pacemaking is also 
a vulnerable system. The most common 
arrhythmia related to the sinus node is 
sick sinus syndrome, which manifests as 
sinus bradycardia, atrial tachycardia, sinus 
arrest, or sinoatrial block. It is a common 

indication for implantation of a perma-
nent electrical pacemaker (5). Changes 
in expression of ion channel–encoding 
genes, cell loss, and degenerative fibrosis 
are thought to be important contributors 
to sinus node dysfunction associated with 
aging (6), but the underlying molecular 
mechanisms are not well understood (7). In 
this issue of the JCI, Froese and colleagues 
delineate a novel molecular pathway that 
can cause stress-induced sinus node dys-
function in aged mice (8), a discovery that 
clearly has potential clinical implications. 
However, the paper is also an important 
step forward in a field that has not been 
studied extensively due to a lack of suit-
able experimental models, since it reports 
a new model for studying age-dependent 
sinus node dysfunction.

Popdc1 and Popdc2 are required  
for stress-induced sinus node 
function during aging
Popeye domain containing (Popdc) pro-
teins contain three transmembrane helices 
and an evolutionary conserved cytoplas-
mic Popeye domain. They are expressed 
in heart and skeletal muscle, and their 
function is not known (9). Froese and col-
leagues showed that mice lacking either 
Popdc1 (also known as Bves or Pop1) or 
Popdc2 (also known as Pop2) are normal 
when housed under standard conditions 
but develop a striking age-dependent sinus 
node dysfunction when subjected to physi-
cal or mental stress (8). The mutant mice 
developed long periods between two sub-
sequent atrial activations (sinus pauses) 
after pharmacologic b-adrenergic receptor 
stimulation (which mimics the effects on 
the heart of stress), after mental stress, and 
after exercise. Defective innervation and a 
defective response to parasympathetic stim-
ulation (slowing heart rate) were excluded 
as causes of the sinus pauses, indicating an 
intrinsic inability of the aging mutant sinus 
node to respond to physiological stress or 
b-adrenergic receptor stimulation. Further-
more, in mutant mice, the inferior part of 
the sinus node was hypoplastic (Figure 1), 
and fewer nodal extensions into the atrium 
were present than in wild-type mice. Stim-
ulation of b-adrenergic receptors causes 
a rise in intracellular cAMP in sinus node 
cells, increasing their rate of depolarization 
(10, 11). Froese and colleagues found that 
Popdc1 and Popdc2 constituted a novel 
class of high-affinity cAMP-binding pro-
teins (8). Moreover, Popdc1 and Popdc2 
were found to also bind to the stretch-

Figure 1
Possible explanations for stress-induced sinus dysfunction in mice mutant for either Popdc1 
or Popdc2. (A) Wild-type sinus node and atrium. The origin of electrical impulse activation 
shifts upon stimulation of the b-adrenergic receptor to the inferior part of the sinus node. An 
electrocardiogram with normal activation of the atria is also shown. Note that the PP interval 
is regular. (B) Sinus node and atrium from a mouse mutant for either Popdc1 or Popdc2. The 
origin of electrical impulse activation cannot shift to the inferior part of the sinus node, because 
this part is absent. Furthermore, the sinus node has reduced in size, which may cause exit block 
or failure of impulse formation. An electrocardiogram during sinus node exit block or failure of 
impulse formation is also shown. Note that failure of atrial activation leads to an increase in PP 
interval (a so-called sinus pause).
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dependent potassium channel TREK-1, 
causing an increase in outward potassium 
current and thereby antagonizing pace-
maker activity. Popdc1 and Popdc2 released 
TREK-1 upon binding cAMP (Figure 2). 
Thus, both b-adrenergic receptor stimula-
tion and the absence of either Popdc1 or 
Popdc2 reduced outward potassium cur-
rent. The elegant work of Froese and col-
leagues therefore demonstrates a novel and 
important role for Popdc1 and Popdc2 in 
pacemaking and provides a potentially very 
useful and much-needed model for age-
dependent sinus node dysfunction.

Is it the function or the size  
of the sinus node?
Sinus arrhythmia in mice mutant for either 
Popdc1 or Popdc2 manifests as periods of 
sinus pause (8), which is the result of either 
a failure of impulse formation within the 
sinus node or a failure of impulse conduc-
tion from the sinus node to the atrium 
(exit block) (6). The interval of the sinus 
pauses was not a multiple of the normal 
sinus interval (8). Furthermore, the inter-
vals between the P-waves (i.e., atrial acti-
vation) in an ECG (PP intervals) did not 
show a decrease prior to a skipped beat. 
Thus, we believe that exit block is unlikely 
to be the explanation for the sinus pauses 
observed in mice mutant for either Popdc1 
or Popdc2 and that failure of impulse for-
mation is the explanation.

Why the impulse does not form is 
unclear. TREK-1 channels generate an 
outward potassium current causing hyper-
polarization of the cell membrane, which 
in turn makes it more difficult for a sinus 
node cell to reach the threshold for activa-

tion. b-Adrenergic receptor stimulation 
increases the heart rate in part by trigger-
ing PKA-mediated phosphorylation of 
TREK-1, which inhibits the TREK-1 cur-
rent (12). Thus, the absence of Popdc1 or 
Popdc2 resembles the inhibiting effect 
of b-adrenergic receptor stimulation on 
TREK-1 current. It is therefore difficult to 
understand how TREK-1 inhibition during 
b-adrenergic receptor stimulation leads to 
an increased rhythm, whereas TREK-1 inhi-
bition due to absence of either Popdc1 or 
Popdc2 leads to sinus pauses. Hence, we 
suggest that the observed sinus pauses in 
mice mutant for either Popdc1 or Popdc2 
are not solely caused by an inhibition of 
TREK-1 current.
b-Adrenergic receptor stimulation did 

not induce sinus pauses in mice mutant for 
either Popdc1 or Popdc2 when they were  
3 months of age (8). It may be that expres-
sion of Popdc1 and Popdc2 reduces with 
age; this could cause loss of redundancy, 
leading to sinus pauses at older ages. How-
ever, at 5 and 8 months of age, the infe-
rior part of the sinus node was found to 
be hypoplastic, and fewer extensions into 
the atrium were present (8). Although 
this could be the result of dysfunction, 
we consider it likely that the hypoplasia 
of the inferior part of the sinus node con-
tributes to the sinus pauses. If the sinus 
node decreases in size, it will experience a 
larger electrotonic load than in the normal 
situation. This may cause the membrane 
of the sinus node cells to hyperpolarize, 
which makes it more difficult to generate 
an impulse (4). Furthermore, it has been 
shown in other species that during b-
adrenergic receptor stimulation, the origin 

of electrical impulse activation shifts from 
the center of the sinus node to the inferior 
part of the sinus node (13), which is the 
area affected in mice mutant for either 
Popdc1 or Popdc2 (Figure 1). This could 
also explain why the response to b-adrener-
gic receptor stimulation is blunted in these 
mice. However, it has also been shown that 
in mice, the origin of activation shifts to 
the superior part of the sinus node (14). 
To investigate how the hypoplastic inferior 
part of the sinus node in mice mutant for 
either Popdc1 or Popdc2 affects impulse 
formation, one could study the origin 
of electrical impulse activation upon b-
adrenergic receptor stimulation by optical 
or electrical mapping. Whether TREK-1 
outward current causes hyperpolarization 
of the membrane needs to be assessed by 
microelectrode recordings.

Do Popdc proteins also interact with 
other proteins or ion channels?
The Popdc family of proteins has never 
before been implicated in pacemaker activ-
ity. Froese and colleagues demonstrate that 
Popdc1 and Popdc2 can specifically inter-
act with the membrane-bound ion chan-
nel TREK-1 and that the level of cAMP 
modulates this interaction (8). We specu-
late that Popdc proteins also interact with 
a variety of other proteins or ion channels 
involved in sinus node function (Figure 2).  
Mutations in the genes encoding the car-
diac sodium channel Nav1.5 (SCN5A) and 
Ankyrin-B have been described in patients 
with sinus arrest and sinoatrial block (15, 
16). Nav1.5 forms the channels that under-
lie the inward sodium current that causes 
fast depolarization of working cardiomyo-

Figure 2
Mechanism of modifying TREK-1 current in rest and during stress. (A) Mechanism by which Popdc1 and Popdc2 induce a TREK-1 outward 
current in resting conditions, as suggested by the work of Froese and colleagues (8). Note that we believe it is possible that Popdc1 and 
Popdc2 also interact with Scn5a or Ankyrin-B. (B) Increased levels of cAMP induced by b-adrenergic receptor stimulation cause Popdc1 or 
Popdc2 to release TREK-1, resulting in inhibition of the TREK-1 outward current. This mechanism is absent in mice mutant for either Popdc1 
or Popdc2, and therefore TREK-1 current is chronically reduced.



commentaries

	 The Journal of Clinical Investigation      http://www.jci.org      Volume 122      Number 3      March 2012	 813

cytes. An inward sodium current is also 
detectable in sinus node cells and is impor-
tant for normal sinus node function (17, 
18). Furthermore, mice with a heterozygous 
mutation in Scn5a show sinus node dys-
function and age-dependent degenera-
tion of sinus node tissue (19). Ankyrin-B is 
important for localization of ion channels 
within the membrane of sinus node cells. 
Deficiency in Ankyrin-B affects a variety of 
ion currents in sinus node cells, leading to 
sinus node dysfunction (16). Popdc pro-
teins may thus interact with Nav1.5 and/or 
Ankyrin-B, thereby affecting transmem-
brane currents and altering sinus node 
function and structure. Such interactions 
would be affected in mice mutant for either 
Popdc1 or Popdc2, and this could contrib-
ute to the age-dependent sinus node dys-
function observed in these mice by Froese 
and colleagues.

Is Popdc a new therapeutic target 
for treatment of sinus node 
dysfunction?
Highly symptomatic patients with sinus 
node dysfunction are efficiently treated 
with implantation of a permanent electri-
cal pacemaker (5). Screening for mutations 
in the POPDC1 and POPDC2 genes may 
help to identify people at risk for sinus 
node dysfunction. However, the specific 
mechanisms underlying sinus arrest or 
sinoatrial block remain poorly understood. 
Therefore, it would be preferable to first 
unravel the mechanism by which Popdc1 
and Popdc2 influence the function of the 
sinus node. One approach could involve 
mutagenesis of the cAMP or TREK-1 bind-
ing site of the two Popdc proteins in mice to 
determine whether cAMP-mediated reduc-
tion of TREK-1 current is involved in stress-
induced acceleration of sinus node rate. In 
addition, identifying new binding proteins 

for Popdc1 and Popdc2 should unravel the 
network in which these proteins function.

Regardless of the exact mechanism by 
which Popdc1 and Popdc2 function in the 
sinus node, Froese and colleagues convinc-
ingly demonstrate that these proteins are a 
novel class of membrane-localized cAMP-
binding proteins that influence sinus func-
tion during aging (8). Their findings pro-
vide a new molecular mechanism involved 
in sinus node function under varying 
physiological conditions. Moreover, as 
age-dependent sinus node dysfunction has 
not been studied extensively due to the lack 
of suitable models, analysis of the mice 
mutant for either Popdc1 or Popdc2 pro-
vide a way to make much-needed inroads 
into studying this pathology.
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