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cAMP, the intracellular signaling molecule produced in response to GPCR signaling, has long been recognized
as an immunosuppressive agent that inhibits T cell receptor activation and T cell function. However, recent
studies show that cAMP also promotes T cell-mediated immunity. Central to cAMP production downstream
of GPCR activation is the trimeric G protein Gs. In order to reconcile the reports of divergent effects of cAMP
in T cells and to define the direct effect of cAMP in T cells, we engineered mice in which the stimulatory Go
subunit of Gs (Gas) could be deleted in T cells using CD4-Cre (Gnas*‘P%). Gnas"‘?* CD4" T cells had reduced
cAMP accumulation and Ca?" influx. In vitro and in vivo, Gnas*‘?* CD4* T cells displayed impaired differen-
tiation to specific Th subsets: Th17 and Th1 cells were reduced or absent, but Th2 and regulatory T cells were
unaffected. Furthermore, Gnas*‘?4 CD4* T cells failed to provoke colitis in an adoptive transfer model, indicat-
ing reduced inflammatory function. Restoration of cAMP levels rescued the impaired phenotype of Gnas*c>4
CD4* T cells, reinstated the PKA-dependent influx of Ca?*, and enhanced the ability of these cells to induce
colitis. Our findings thus define an important role for cAMP in the differentiation of Th subsets and their
subsequent inflammatory responses, and provide evidence that altering cAMP levels in CD4* T cells could

provide an immunomodulatory approach targeting specific Th subsets.

Introduction

The stimulatory Ga subunit (Gas) of the trimeric G protein Gs
plays a central role in GPCR-mediated signal transduction by cou-
pling the receptors to the activation of adenylyl cyclase (AC) and
increased synthesis of cAMP (1). Increases in cAMP can inhibit T
cell function, e.g., blunting CD4* T cell activation, proliferation,
and production of certain cytokines, such as IFN-y and TNF-a
(2, 3). In contrast to these data, cAMP has also been shown to
stimulate inflammation by promoting Th17 cell expansion
(4-6). For example, the mucosal adjuvant cholera toxin (CT), viaa
cAMP-dependent mechanism, provokes Th17 immune response
at mucosal sites (7).

To help resolve such discrepant findings regarding the role of
cAMP in CD4* Th cell differentiation and function, we generated
conditional knockout mice whose CD4" T cells lack the gene for
Gas (GnasP* mice) and thus have decreased production of cAMP.
We found that CD4* T cells isolated from Gnas“P* mice had reduced
cAMP levels, decreased Ca?* influx, and weak Th17 and Th1 respons-
es but normal Th2 and Treg responses both in vitro and in vivo. Our
data thus suggest that cAMP in CD4"* T cells is proinflammatory by
altering the differentiation and activation of Th subsets.

Results

Gnas®P* CD4* T cell mice have reduced IL-17 and IFN-y production.
GPCR-mediated increase in intracellular cAMP requires the acti-
vation of AC by Gas (3). We used the Cre-loxP system to generate
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mice with a deletion of Gnas (the gene that encodes Gas) targeted
to T cells (8). The targeted genetic deletion of Gas with CD4-Cre
occurs at the CD4*CD8" stage. Consequently, we found that both
peripheral CD4" and CD8" T cells from Gnas*“P* mice lacked Gas
expression (Figure 1A). Gnas®“P* and WT mice had similar numbers
of CD4* and CD8" T cells and a similar percentage of effector mem-
ory (CD44MCD62L") and naive (CD44°CD62LY) CD4* and CD8*
T cells (Supplemental Figure 1, A-E; supplemental material avail-
able online with this article; doi:10.1172/JCI59097DS1), indicating
that the loss of Gas did not affect T cell development overall.

Figure 1B shows that compared with WT CD4* cells, CD4* T cells
from Gnas"“P* mice, have blunted cAMP accumulation in response
to the AC activator forskolin and the agonists of Gas-coupled
GPCRs PGE; and isoproterenol in the presence of the phosphodies-
terase 4 (PDE4) inhibitor rolipram. Rolipram was used based on the
high expression of PDE4B and the greater ability of PDE4 inhibitors
to increase cAMP compared with other family-specific PDE inhibi-
tors in CD4" T cells (Supplemental Figure 2). Reduced cAMP accu-
mulation in Gnas®“P* CD4* T cells in response to AC activation by
forskolin is consistent with the observation that Gas is necessary for
maximal forskolin-stimulated AC activation (9). GPCR-stimulated
cAMP levels were similar in CD11c* bone marrow-derived dendritic
cells (BMDCs) from Gnas®“P* and WT mice (Figure 1C), consistent
with a T cell-specific deletion of Gas (Figure 1A).

Assessment of the cytokine profile of CD4* T cells isolated from
the Gnas®P* mice revealed lower levels of IL-17A, IL-22, and IFN-y
production upon stimulation with anti-CD3/CD28 Abs compared
with the responses of WT CD4" T cells (Figure 1D). Despite the
change in the cytokine profile, we observed no significant differ-
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ences in the mRNA levels of the Th17- and Th1-lineage commit-
ment transcription factors Rorc and Tbet (Figure 1E), suggesting
that lineage commitment is not altered in Gnas"“P* mice. Func-
tionally Gnas"“P* mice also had reduced ability to clear Citrobacter
rodentium compared with WT mice despite similar bacterial loads
at 1 week after infection (Supplemental Figure 1F). Also, the CD4*
T lymphocytes from the colon lamina propria (LPLs) of Gnas?¢P4
infected mice had a lower expression of IL-17A* cells and IFN-y*
cells (Supplemental Figure 1G).

We also evaluated the possible contribution of CD8" T cells and
BMDCs from Gnas*“P* mice to CD4* T cell function. As shown in
Supplemental Figure 3, deletion of Gas in these cells did not affect
OVA-specific CD4" T cells responses.

Gnas*P* mice do not mount an antigen-specific Th17 response. The
data generated with anti-CD3/CD28 Ab stimulation (Figure 1D)
suggest a defect in Th17 cytokine production by Gnas*“P* CD4*
T cells. To determine antigen-specific Th17 immune responses in
Gnas®cP+ CD4* T cells, we used in vitro and in vivo immunization
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protocols with OVA and CT (7). Figure 2A shows that compared
with control OT-2 cells, OT-2/Gnas*P+ CD4" T cells differenti-
ated in vitro had reduced production of Th17 cytokines (IL-17A
and IL-22). Furthermore, CD4" T cells isolated from the spleens
of in vivo OVA/CT-immunized WT mice, but not Gnas*“P* mice,
mounted OVA-specific IL-17A and IL-22 responses (Figure 2B).
Consistent with previous data (7), we did not detect OVA-specific
IL-17F and IL-21 production in OVA-stimulated CD4" T cell cul-
tures (Figure 2, A and B). Collectively, the data in Figures 1 and 2
provide evidence that Gas-mediated signaling in CD4* T cells is
necessary for Th17 response.

Gnas™P* CD4* T cells fail to induce colitis. Adoptive transfer of naive
WT CD4" T cells into Ragl~/~ recipients provokes colitis, because
CD4* T cells acquire a colitogenic Th1 and/or a Th17 phenotype
(10, 11). We investigated whether Gnas*“?* CD4" T cells develop
this colitogenic phenotype in the adoptive transfer model. The
transfer of WT CD4* T cells into Ragl~~ mice produced greater
loss in body weight (Figure 3A), higher disease activity index
March 2012
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(Figure 3B), and more severe colonic inflammation than the trans-
fer of Gnas*P* CD4" T cells (Figure 3C). Consistent with these
findings, we found lower levels of IL-17A, IL-22, and IFN-y in the
colonic explants of recipients transferred with Gnas®P* CD4" T
cells (Figure 3D). However, we were unable to recover sufficient
Gnas®®P* CD4* T cells from LPLs as compared with WT mice for
detailed studies. Gnas*“®* CD4* T cells isolated from recipients’
spleens 4 weeks after transfer displayed fewer IFN-y*, IFN-y*IL-17A%,
and TNF-a* CD4* T cells than did cells isolated from the spleen
of Ragl~”~ mice that received WT CD4* T cells (Figure 3E). These
results provide further evidence for the contribution of Gas to
Th1 and Th17 differentiation but do not exclude a defect in the
cells’ ability to migrate to the colon.

Gnas®P* CD4* T cells display reduced Th17 and Th1 cell differentia-
tion in vitro. Figures 1-3 indicate a role for Gas in the acquisition
of Th17 and Th1 effector functions. To further elucidate the role
of Gass in Th subset differentiation of CD4* T cells, we used an in
vitro differentiation system for each Th subset: after FACS sorting
of naive CD4" T cells from the spleens of WT and Gnas"“P* mice, we
cultured the cells for 4 days under Th17, Th1, Th2, and Treg polar-
ization conditions; stimulated the cells with PMA/ionomycin;
and assessed (by flow cytometry) the intracellular levels of IL-17,
IFN-y, IL-4, and Foxp3 (Figure 4). WT CD4" T cells had a 2.8-fold
greater increase (i.e., 41.6% vs. 14.9%) in IL-17-producing cells
(Th17) in response to an IL-6/TGF-f differentiation protocol (12)
and a 22-fold increase in IL-17-producing cells (Th17) in response
to an IL-6/IL-23/IL-1 differentiation protocol (13) compared with
Gnas"P* mice (Figure 4A), thus demonstrating a role for Gas in
Th17 differentiation. Furthermore, WT CD4"* T cells had an 81-
fold increase in IFN-y-producing cells (Th1, Figure 4B) but a simi-
lar number of IL-4-producing cells (Th2, Figure 4C) compared
with Gnas*P4 CD4* T cells. We also observed no significant differ-
ences in Tregs between WT and Gnas*“P* mice: Foxp3* expression
(Figure 4D) and stability (Supplement Figure 4A), IL-10 produc-
tion (Supplemental Figure 4B), and the suppressive effect on WT
CD4* T cell proliferation (Supplemental Figure 4C) were similar
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Figure 2

Gos-mediated signaling in CD4+ T cells promotes antigen-specific Th17
cell response. (A) Decreased IL-17A and IL-22 in GnasA¢P4 CD4+ OT-2
cells. Enriched splenic CD4+ T cells from OT-2 or OT-2/GnasAcP4 mice
were cocultured with WT CD11c* splenic DCs at a 2:1 ratio for 5 days
in the presence of class || OVA—derived peptide. The OT-2 cells were
restimulated by plate-bound anti-CD3/28 Abs for 24 hours, and the
cytokine levels were determined (ELISA). Data are mean + SEM;
n=3;*P<0.05, **P < 0.01. (B) Gas-mediated signaling in CD4+ T cells
promotes OVA-specific Th17 cell response in vivo. WT or GnasAcb4
mice immunized orally with CT and OVA. After 42 days, the spleno-
cytes were collected and restimulated with OVA for 3 days in vitro, and
the levels of cytokines were determined in the supernatants (ELISA).
Data are mean + SEM; n = 6, from 2 experiments; *P < 0.05 by Mann-
Whitney U test.

in Tregs from WT and Gnas*“P* mice. Taken together, these data
suggest that Gais in CD4" T cells regulates Th17 and Th1, but not
Th2 or Treg, cell differentiation.

cAMP restores the ability of Gnas*“P*CD4* T cells to promote Th17 and
Th1 differentiation. Since Gnas““P* CD4" T cells have blunted cAMP
accumulation, we hypothesized that addition of exogenous cAMP
would reverse the effects of the genetic deletion. We thus treated
Gnas®P* FACS-sorted naive CD4* T cells cultured under Th17 and
Th1 polarization conditions with 8 bromo-cAMP (8Br-cAMP),
a cell-permeable cAMP analog, and found (Figure 5A) a 2.1-fold
increase in IL-17* cells in response to the IL-6/TGF-f differentia-
tion and a 3.3-fold increase in response to the IL-6/IL-23/IL-1p dif-
ferentiation protocol. The increase in IL-17* cells by 8Br-cAMP was
dose dependent (Supplemental Figure 5A). 8Br-cAMP treatment of
WT CD4" T cells increased Th17 cells by 50% (Figure SA) under both
Th17 polarization conditions and increased IL-17*"TNF-o." cells
by 50%-200% in both WT and Gnas*?* CD4* T cells (Figure 5B).
8Br-cAMP increased Gnas*“P* CD4'IFN-y* T cells by 5.8-fold
(Figure 5C) and of Gnas*P4 IFN-y*"TNF-a.* cells by 5.2-fold (Figure
5D) but did not alter either cell population in WT CD4" T cells.
8Br-cAMP did not increase IL-4* cells (Th2) or Foxp3* cells (Tregs)
in either WT or Gnas*“?* CD4* T cells, further implying that cAMP
has divergent effects on Th subset differentiation (Supplemental
Figure 5, B and C). Collectively, these data indicate that Gnas"P*
CD4" T cells lack normal Th17 and Th1 differentiation as a result
of reduced cAMP accumulation.

Transcriptional regulation of Th17 differentiation in Gnas*“®* CD4* T cells.
The reduced number of IL-17" cells from Gnas*?* CD4* T cells
(Figure 4) and the restoration of IL-17 production by 8Br-cAMP
(Figure 5) might imply that cAMP regulates the expression of
transcription factors involved in Th17 differentiation (14).
However, the presence of 8Br-cAMP produced no significant
changes in the mRNA levels of Rorc (15), Rora,, or aryl-hydrocar-
bon receptor (Abr) under either IL-6/TGF-f3 or IL-6/IL-23/IL-1f3
polarization conditions (Supplemental Figure 6, A-C). The
expression of Rorc mRNA in WT and Gnas®“P* CD4" T cells was
comparable during Th17 differentiation (Supplemental Figure
7A), even though the mRNA level of 11174 was reduced in Gnas*“P*
CD4* T cells (Supplemental Figure 7B).

Since the phosphorylation of Stat3 by IL-6 or IL-23 is manda-
tory for Th17 differentiation, we investigated its phosphorylation
in WT and Gnas®P* CD4" T cells (16, 17). As shown in Supplemen-
tal Figure 8, we found elevated levels of Stat3 phosphorylation in
Gnas®P* CD4* T cells under each Th17 differentiation condition.
We conclude that the lower number of IL-17* cells among Gnas*¢P*
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Figure 3

GnasAcb4 CD4+ T cells fail to induce colitis. (A) Percentage of initial body weight of Rag7-- recipients transferred with WT or GnasA¢24 FACS-sorted
naive CD45RBNCD25- CD4+ T cells with or without the cotransfer of CD4*CD45RB°CD25* Tregs; ***P < 0.001, between recipients receiving
WT and GnascP4 naive CD4+ T cells, by 2-way ANOVA. (B) Disease activity index (DAI) in recipient mice. (C) Minimal histological inflamma-
tion in the colons of recipients of transferred naive GnasA¢P4 CD4+ T cells compared with severe inflammation in the colons of recipients of
transferred naive WT CD4+ T cells (original magnification, x50, scale bars: 100 uM). (D) Cytokine levels in colon explant supernatants after
24 hours of culture. (E) Reduced IFN-y* and IL-17A* CD4+ T cells in GnasA¢P4 donor CD4+ T cells. Enriched CD4+ T cells from spleens of recipient
mice at day 30 after transfer were stimulated with PMA/ionomycin for 4 hours. Intracellular cytokine levels were determined by flow cytometry.
The number in each quadrant indicates the frequency of cells. Representative plots from 2 similar experiments are shown. Data in A, B, and D
represent mean + SEM from an experiment representative of 3 independent experiments with similar results. *P < 0.05.

CD4" T cells that was observed with Th17 polarization conditions
was not due to an inhibition of RORyt expression or Stat3 activa-
tion during the Th17 differentiation program.

cAMP, via PKA, increases Ca?" influx and promotes Th17 differentiation.
Since Ca?" influx is mandatory for TCR signaling and is regulated
by cAMP in a number of cell types, we investigated whether Ca2?*
had a role in the phenotype of Gnas®“P* CD4" T cells (18). TCR
stimulation increased cAMP levels in CD4" T cells, implying a
physiological role for cAMP in T cell activation (Supplemental
Figure 9). Ca?* influx was reduced in Gnas®“P* CD4* T cells com-
pared with WT CD4" T cells (Figure 6A); this reduction could be
reversed by addition of 8Br-cAMP (Figure 6, B and C). The Ca?*
transport ATPase of intracellular store-operated Ca?* channels
(SERCA) is inhibited by thapsigargin (Tg) (12). Treatment with
Tg did not alter intracellular Ca?* levels in CD4* T cells incubated
in Ca?*-free medium (Figure 6D); however, upon Ca?" addition,
Ca?" influx increased to a greater extent in WT CD4" T cells than
in Gnas*?* CD4" T cells. These data imply that cAMP mediates
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Ca?" influx in CD4" T cells, especially because we observed no
differences in the mRNA expression of Orail3, Stim1 and Stim2,
or L-type Ca?* channels between WT and Gnas*“?* CD4* T cells
(Supplemental Figure 10 and refs. 12, 19).

To determine whether the cAMP-mediated increase in Ca?* influx
is required for Th17 differentiation, we incubated FACS-sorted
naive CD4* T cells from WT and Gnas*“?* mice under Th17 polar-
ization conditions (IL-6/TGF-f) with 8Br-cAMP in the presence
or absence of the L-type Ca?* channel blocker diltiazem (20). Dilti-
azem inhibited the increase in the number of Th17* cells stimulat-
ed by 8Br-cAMP in both WT and Gnas*®* CD4" T cells (Figure 6E).
The increase in Ca?* influx by cAMP is PKA dependent (21): Fig-
ure 7, A and B, shows that the PKA inhibitor H-89 reduced Ca?*
influx and the number of IL-17* cells induced by 8Br cAMP in
CD4" T cells under Th17 polarization conditions (IL-6/TGF-p).
These data thus highlight a role for cAMP/PKA/Ca?* in Th17
subset differentiation that is independent of lineage commitment
factors, such as RORyt.
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We then assessed the recipients over a
4-week period. Ragl~~ mice that received
Th17 cells that had been differentiated in
the presence of 8Br-cAMP developed more
severe colitis compared with those that
received Th17 cells differentiated without
8Br-cAMP (Figure 8, B and D, and Supple-
mental Figure 11, B and D). Consistent
with previous reports of Th17 plasticity
(22), CD4* T cells isolated from the mes-
enteric lymph nodes and spleens of recipi-
ents displayed a phenotype different from
that observed prior to their transfer. The
in vitro differentiation of CD4* T cells in
the presence of 8Br-cAMP resulted (after
transfer) in a lower percentage of IL-17*
cells, but a higher percentage of IFN-y*
cells and IL-17*IFN-y* double-positive
cells (Figure 8C and Supplemental Figure
11, A and C). These results highlight the
proinflammatory role of cAMP in CD4*
T cells and its ability to increase the colito-
genic properties of Th17 cells.
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(IL-6 + TGF-p)

Th17
(IL-6 + IL-23 + IL-1p)

Th1
(IL-12)

Discussion

Gos mediates the activation of AC and gen-
eration of cAMP in response to GPCR ago-
nists (1). Global Gas deficiency is embry-
onically lethal; therefore, we generated
mice with a T cell-selective deletion of Gais
(8, 23, 24). Gnas*P* CD4-Cre mice devel-
oped normally, but their CD4* T cells did
not accumulate cAMP; had reduced Ca?*
influx; secreted lower levels of IL-17, IL-22,
and IFN-y (but normal IL-4) compared
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with WT CD4* T cells; and did not mount
an antigen-specific Th17 response upon
CT/OVA immunization (Figure 2). The
adoptive transfer of naive Gnas*“P* CD4*
T cells into Ragl~~ recipients provoked
minimal colonic inflammation compared
with that induced by the transfer of naive
WT CD4* T cells. Consistent with this
phenotype, Gnas*“P* CD4* T cells isolated
from recipients’ spleens displayed a lower
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Figure 4

Reduced Th17 and Th1 cell differentiation of GnasA¢P4 naive CD4+ T cells in vitro. FACS-sorted
naive CD4+ T cells from WT or GnasAP4 spleens were cultured for 4 days under Th polarization
conditions for (A) Th17, (B) Th1, (C) Th2, and (D) Tregs as described in Methods. The CD4+ T
cells were then stimulated with PMA/ionomycin for 4 hours. IL-17A, IFN-y, IL-4, and Foxp3 levels
were determined by flow cytometry. The number in each quadrant indicates the frequency of

cells. Data are representative of 3 experiments with similar results.

cAMP enhances the colitogenicity of in vitro differentiated Th17 cells.
To assess the in vivo effect of cAAMP on Th17 cells, we transferred
WT Th17 cells that were differentiated in vitro under IL-6/TGF-§
and IL-6/IL-23/IL-1f conditions in the absence or presence of 8Br-
cAMP into Ragl~~ mice (Figure 8A and Supplemental Figure 11A).
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frequency of IFN-y*, IFN-y*IL-17", and
TNF-a cells. To better elucidate the role of
Gas in Th cell differentiation, we used an
invitro differentiation system. CD4* T cells
from Gnas®P* mice displayed fewer Th17
and Th1 cells but comparable expression
of Th2 or Tregs relative to WT CD4* T cells
(Figure 4). Collectively, these in vitro and in
vivo data indicate a divergent role for Gas
in Th subset differentiation and function.
To determine whether the phenotype of Gnas®“?* CD4* T cells
was the result of reduced cAMP accumulation, we used 8Br-cAMP
to restore cAMP levels and assessed in vitro Th differentiation. 8Br-
cAMP restored the expression of Gnas*“P* IL-17" and IFN-y* but
did not alter IL-4* or Foxp3* CD4"* T cells, implying that reduced
Volume 122 March 2012 967
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Figure 5

cAMP restores Th17 and Th1 differentiation of GnasAc24 CD4+ T cells. (A and B) FACS-sorted naive CD4+ T cells from WT or GnasA¢P? spleens
were cultured for 4 days under two Th17 polarization conditions: IL-6/TGF-f3 or IL-6/IL-23/IL-1p with or without 8Br-cAMP (25 uM). (C and D)
FACS-sorted naive CD4+ T cells were cultured for 4 days under Th1 polarization conditions with or without 8Br-cAMP (25 uM). The CD4+ T cells
were stimulated with PMA/ionomycin for 4 hours, and the intracellular levels of IL-17A, IFN-y, and TNF-a were determined by FACS analysis.
The number in each quadrant indicates the frequency of cells. The data are representative of 3 independent experiments with similar results.

cAMP accumulation in Gnas®®P* CD4* T cells selectively modu-
lates Th17 and Th1 differentiation. Furthermore, restoring cAMP
increased the expression of IL-17*TNF-a" and IFN-y"TNF-a* cells,
demonstrating that cAMP enhances the inflammatory phenotype
of Th17 and Th1 subsets (Figure 5). The 8Br-cAMP-promoted
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Th17 phenotype observed in CD4* T cells from Gnas*“P* mice was
not associated with increased levels of Th17 lineage-specific tran-
scription factors (Supplemental Figures 7 and 8), thus indicating
that a transcriptional defect does not account for the impairment

in Th17 differentiation.
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Figure 6

cAMP, via increasing Ca2* influx, restores Th17 and Th1 differentiation of GnasA¢P4 CD4+ T cells. (A—C) Ca?* influx in enriched WT or
GnasAcb4 gplenic CD4+ T cells. CD4+ T cells stained with anti-CD3 Ab were cross-linked with goat anti-hamster Abs (aHam) in Ca2*-free
HBSS medium, followed by the addition of CaCl, (2 mM); WT (CFSE-labeled) or GnasAct4 CD4+ T cells (no label) were mixed, incubated with
the calcium indicator Indo-1 AM, and assayed in one tube at the same time in the same environment. Ca?* influx was measured by changes
in the mean fluorescence ratio of Indo-1 AM at violet (405 nm) to blue laser (510 nm). 8Br, 8Br-cAMP, 25 uM. The data are representative of
1 of 3 independent experiments. (D) Reduced Ca?* influx in GnasAcb4 splenic CD4+ T cells stimulated by Tg. WT or GnasA¢P4 splenic CD4+
T cells in Ca2*-free HBSS medium (EGTA, 0.5 mM) were stimulated by Tg (1 uM), followed by the addition of CaCl, (2 mM). (E) Diltiazem
inhibits the 8Br-cAMP increase in Th17 cells. FACS-sorted naive CD4* T cells were cultured for 4 days under Th17 differentiation conditions
(IL-6/TGF-B) as indicated. 8Br: 25 uM; diltiazem: 20 uM. The CD4+ T cells were stimulated with PMA/ionomycin for 4 hours. Intracellular
cytokine levels were determined by flow cytometry. The number in each quadrant indicates the frequency of cells. Data are representative of
2 independent experiments with similar results.

In addition to the expression of lineage-specific transcription  L-type calcium channels in CD4" T cells can inhibit Th17 and Th1
factors, differentiation of Th17 or Thl cells is regulated by Ca?*  cell differentiation without inhibiting the expression of RORyt or
signaling, with Ca?* influx primarily mediated by calcium release-  T-bet (12). Since cAMP can activate L-type calcium channels (27),
activated channels (CRACs), inositol-1,4,5-trisphosphate receptors ~ we postulated that Gnas*®* CD4" T cells have reduced Ca?" influx
(IP3Rs), and L-type calcium channels (25, 26). Defective CRACs or  that contributes to their Th phenotype. Indeed, we found that com-
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Figure 7

cAMP, via PKA, increases Ca2* influx and promotes Th17 differentiation.
(A) cAMP-mediated Ca2* influx in WT CD4+ T cells is inhibited by
PKA. CD4+ T cells stained with anti-CD3 Ab were crosslinked with
goat anti-hamster Abs (e«Ham) in Ca?*-free HBSS medium, followed
by the addition of CaCl, (2 mM); H-89: 10 uM, 15 minutes preincuba-
tion; 8Br-cAMP, 25 uM. (B) cAMP promotes Th17 differentiation via
PKA. FACS-sorted naive WT CD4+ T cells were cultured for 4 days
under Th17 differentiation conditions (IL-6/TGF-f) with the indicated
reagents. H-89: 10 uM, 30 minutes preincubation. The number in each
quadrant indicates the frequency of cells. Data are representative 3
independent experiments with similar results.

pared with WT CD4* T cells, Gnas®“P* CD4" T cells had reduced
Ca? influx and a reduced Th17 polarization response and that this
reduced response could be restored with 8Br-cAMP; blocking Ca?*
channels inhibited the increase in Th17 cell number (Figure 6).
Moreover, the cAMP-induced Ca?" influx and subsequent Th17
differentiation were PKA dependent (Figure 7). Previous data have
suggested that Gas can directly activate Ca?* channels (28, 29) and
non-receptor and receptor tyrosine kinases (30-32); however, our
results indicating that addition of a cAMP analog could reverse the
phenotype of the Gnas*®* CD4" T cells imply that the effects of
Goas on Th subset differentiation is likely to be mediated, at least
for the most part, by decreased cAMP accumulation in these cells.

Our in vitro data suggested that cAMP not only promotes Th17
and Th1 differentiation but also increases their inflammatory
profile. To validate this finding in vivo, we transferred Th17 cells
that were differentiated in vitro with or without 8Br-cAMP into
Ragl~- recipients and tested their ability to provoke colitis. Adding
8Br-cAMP increased the severity of colitis and the inflammatory
profile of the CD4* T cells 4 weeks after transfer (Figure 8 and Sup-
plemental Figure 11). The adoptive transfer of Gnas®P4 naive CD4*
T cells into Ragl~~ recipients resulted in a lower disease activity
index and reduced destruction of the colonic mucosa compared
with transfer of WT CD4" T cells (Figure 3), further indicating a
role for Gas-dependent cAMP production in the induction and/or
maintenance of the inflammatory CD4* T cell phenotype.

Taken together, our data show the importance of Gas and the
synthesis and accumulation of cAMP and activation of PKA in the
induction of Th17 and Th1 cell differentiation, as well as in the
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upregulation of their inflammatory responses. Importantly, these
effects were not observed for Th2 cells, thus implying that their
differentiation is independent of cAMP and cAMP/PKA-induced
Ca?* influx. This observation is consistent with evidence that the
activation of Th1 and Th2 under the same conditions results in
different patterns of Ca?* signaling and cytokine production (33).

Our results thus indicate that cAMP has a proinflammatory and
not, as previously proposed (3), an immunosuppressive effect, in
terms of regulation of the function of Th cells. A possible explana-
tion for differences in such results is that we assessed the role of
cAMP during Th cell differentiation while others evaluated such
a role after differentiation of Th cells. The Th-specific effects by
cAMP suggest that it may be exploited for therapeutic immuno-
modulation. Such therapeutic effects might be achieved by target-
ing: (a) cAMP formation through the activation of Gas-coupled
or inhibition of Gai-coupled GPCRs, (b) cAMP degradation by
inhibiting PDE isoforms, or (c) L-type Ca?* channels through
their blockade in CD4* T cells. It will be of interest to test such
approaches in future studies.

Methods
Mice. C57BL/6 (B6) mice were purchased from Harlan, CD4-Cre transgenic
mice from Taconic, and OT-2 (B6) mice expressing a transgenic TCR that
recognize class II-derived OVA peptide and Ragl~~ mice (B6) from The
Jackson Laboratory. To generate Gas-deficient T cells, lox-flanked Gnas
mice (8) were crossed to CD4-Cre mice. The T cells in the Cre*Gnas"“P* mice
were determined to be Gnas®“?* and Gnas®“P%. The WT littermates (Cre
Gnas"l") or B6 mice were used as control (WT). To generate OVA-specific
Gnas®©P* mice, we crossed Gnas®“P* to OT-2 mice. Seven- to 12-week-old
mice were used in all the experiments and were maintained under specific
pathogen-free conditions.

Reagents. Reagents were obtained as follows: 8Br-cAMP and PKA inhib-
itor H-89 from Calbiochem; recombinant cytokines (IL-23, IL-1f3, and
IL-6) and anti-mouse CD28 Ab from eBioscience; human recombinant
TGF- from PeproTech; IL-2 from Sigma-Aldrich; anti-mouse CD3e
(clone 2C11), anti-IL-4 (clone 11B11), and anti-IFN-y (clone XMG1.2)
neutralizing antibodies from BioXcell; rolipram and diltiazem from
Tocris Bioscience. Tg, forskolin, PGE;, and isoproterenol were purchased
from Sigma-Aldrich.

CD4* T cell isolation and differentiation in vitro. CD4* T cells were isolated by
immunomagnetic selection (EasySep CD4-negative selection kit, StemCell
Technologies) from a single-cell suspension of splenocytes or peripheral
lymph node cells. Naive CD4* T cells (CD62LMCD44°CD25") were iso-
lated from CD4* T cells by FACS sorting (Aria, BD Biosciences). Cells were
incubated in complete IMDM medium (Invitrogen) supplemented with
2 mM L-glutamine, 100 U/ml penicillin, 100 ug/ml streptomycin, 50 uM
B-mercaptoethanol, and 10% FCS. Culture plates (48-well) were coated
with goat anti-hamster Ab (0.1 mg/ml, USBiological). Naive CD4* T cells
(1x10%/ml) were cultured in medium with soluble anti-CD3 Ab (0.25 ug/ml),
anti-CD28 Ab (1 ug/ml), and neutralizing antibodies for IL-4 (10 ug/ml)
and IFN-y (10 pug/ml).

Naive CD4* T cells were differentiated into Th17 cells according to two
protocols: (a) TGF-B-dependent Th17 cells were obtained by addition of
IL-6 (20 ng/ml) and TGF-f (4 ng/ml) to the ThO cultures (34); (b) IL-23-medi-
ated Th17 differentiation by addition of IL-6 (20 ng/ml), IL-23 (10 ng/ml),
and IL-1f (10 ng/ml) (13). Naive CD4" T cells were cultured in goat anti-
hamster Ab-coated culture plates in complete IMDM medium with solu-
ble anti-CD3 Ab (5 ug/ml) and anti-CD28 Ab (1 ug/ml), added with IL-12
(20 ng/ml) and neutralizing anti-IL-4 Ab (10 ug/ml) for Th1 differentia-
tion; or IL-4 (10 ng/ml) and neutralizing anti-IFN-y Ab (10 ug/ml) for Th2
Volume 122
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cAMP enhances the colitogenicity of in vitro differentiated Th17 cells. FACS-sorted naive CD4+ T cells from WT spleens were cultured for 4 days
under Th17 differentiation conditions (IL-6/TGF-B) with or without 8Br-cAMP (25 uM) and then adoptively transferred into Rag7-- mice. (A)
Intracellular expression of IFN-y and IL-17A in Th17 cells before transfer. (B) Percentage of initial body weight of Rag7-- recipients after transfer
of Th17 cells (differentiated in vitro with or without 8Br-cAMP). The co-transfer of WT CD4+*CD45RBNCD25- T cells with CD45RB°CD25* Tregs
was used as control. Data are shown as mean + SEM; n = 3-5; ***P < 0.001, 2-way ANOVA, recipients receiving in vitro differentiated Th17 cells
with or without 8Br-cAMP. (C) Intracellular expression of IFN-y and IL-17A in Th17 cells 28 days after transfer. CD4+ cells from spleen or MLN of
recipient mice at day 28 after transfer were stimulated with PMA/ionomycin for 4 hours, and the intracellular cytokine levels were determined by
flow cytometry. The number in each quadrant (A and C) indicates the frequency of cells. (D) Histological analysis of the colons of Rag7-- mice
receiving in vitro differentiated Th17 cells with or without 8Br-cAMP (original magnification, x100, scale bars: 100 uM).

differentiation. At day 2, recombinant human IL-2 (20 U/ml) was added
into the Th1 or Th2 culture. For Treg differentiation, TGF-f3 (10 ng/ml)
and IL-2 (100 U/ml) were added into IMDM culture medium. After 4 days,
cells were collected for analysis.

ELISA measurement of cytokines. Splenic CD4* T cells were enriched by
immunomagnetic cell selection (EasySep CD4 negative selection kit,
StemCell Technologies) to greater than 95% purity by negative selection.
CD4" T cells (1 x 105 cells) were stimulated with plate-bound anti-CD3 Ab
(10 ug/ml) and anti-CD28 Ab (1 ug/ml) for 72 hours in complete RPMI
medium (Mediatech Inc.) supplemented with 2 mM L-glutamine, 100 U/ml
penicillin, 100 ug/ml streptomycin, SO uM p-mercaptoethanol, and 10%
FCS. Cytokine levels in the supernatant were determined using ELISA kits
for IL-17A, IL-5, IL-10, TNF-a, IFN-y (eBioscience), and IL-22 (Antigenix
America Inc.) following the manufacturers’ instructions.

Flow cytometry and intracellular staining. All antibodies used for cell
labeling were purchased from BD Biosciences — Pharmingen and eBio-
sciences. The data were acquired by an LSR II, FACSCalibur, and C6
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Accuri flow cytometer (BD Biosciences) and analyzed by FlowJo soft-
ware (Tree Star Inc.). For measurements of intracellular cytokines, CD4*
T cells were stimulated with PMA (50 ng/ml) and ionomycin (1 uM) in
the presence of GolgiStop (BD Biosciences — Pharmingen) for 4 hours.
Cytokines were analyzed using antibodies to IL-17A, TNF-a, IL-4,
Foxp3, or IFN-y (eBioscience) according to the manufacturer’s instruc-
tions. For measurements of p-Stat3 levels, we incubated CD4" T cells
with anti-CD3 (10 pg/ml) and anti-CD28 (1 ug/ml) Abs with the indi-
cated cytokines for 15 minutes. Cells were fixed by 1.5% formaldehyde,
100% methanol, and stained by anti-p-Stat3-PE Ab (pY705, BD Biosci-
ences — Pharmingen).

cAMP assay. cAMP accumulation was measured as previously described
(35). CD4" T cells or CD11c* BMDCs were enriched by magnetic selection
and equilibrated in RPMI-1640 medium containing 10% FCS for 30 min-
utes at 37°C and then incubated with stimulatory agonists for 10 minutes
in the absence and presence of PDE inhibitors (added 30 minutes before
the addition of agonists). Reactions were terminated by aspiration of the
Volume 122 Number 3
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medium and addition of 50 ul of cold 7.5% (wt/vol) trichloroacetic acid
(TCA) per million cells. cAMP content in TCA extracts was determined by
radioimmunoassay and normalized to the amount of cells per well.

OVA-specific immune responses upon in vitro immunization. Naive OT-2 CD4* T
cells from spleens of WT or Gnas*“P* mice were enriched by immunomagnetic
cell selection (EasySep CD4 negative selection kit, StemCell Technologies) to
greater than 95% purity and were further depleted of CD25" cells (anti-CD25
Biotin Ab and Biotin selection kit, StemCell Technologies) by negative selec-
tion. The WT splenic DCs were isolated by use of a CD11c positive selection
kit (StemCell Technologies). DCs (0.5 x 10°) were then cocultured with WT
or OT-2/Gnas*P4 naive T cells (1 x 10°) in RMPI-1640 medium in the pres-
ence of class IT OVA peptide (aa 323-339) (10 ug/ml) for 5 days. OT-2 cells
(1 x 10%) were then collected and stimulated by plate-bound anti-CD3 Ab
(10 ug/ml) and soluble anti-CD28 Ab (1 ug/ml) for 24 hours. Supernatants
were collected and cytokine levels were determined (ELISA).

Oral CT/OVA immunization. Mice were immunized orally by gavage on day 0
and day 14 with CT (20 ug, List Laboratories) and OVA (200 ug, Sigma-
Aldrich), as described previously (7). On day 39, the mice were challenged
with OVA (200 ugi.p.). Single-cell suspensions from spleens were collected
on day 42 and incubated for 3 days with medium alone or supplemented
with OVA (200 ug/ml). The concentration of cytokines in the supernatants
was determined by ELISA.

Ca?* flux measurement. Splenic CD4* T cells were loaded for 10 minutes
at 37°C with CFSE (20 nM), followed by washing. Equal numbers of
CFSE-labeled WT CD4* T cells were mixed with the unlabeled Gnas®P*
CD4" T cells. Cells were suspended at a density of 1 x 107 cells per ml in
Ca?*-free and Mg?'-free HBSS supplemented with 2% FCS and incubated
for 1 hour at 37°C in 5% CO, with the calcium indicator Indo-1 AM (36)
(2 uM; Molecular Probes, Invitrogen). Cells were washed with HBSS medi-
um and were treated for 30 minutes on ice with anti-CD3 (clone 2C11) Ab
and APC-conjugated anti-CD4 Ab (GK1.5, eBioscience). Cells were washed
once with HBSS, placed on ice for 1 hour, and rewarmed to 37°C before
data analysis on an LSRII (BD). For cell stimulation, goat anti-hamster Ab
(5 ug/ml) was added to crosslink CD3 Abs. CaCl, (2 mM) and 8Br-cAMP
(50 uM) were added as indicated. In some experiments, CD4* T cells were
preincubated with the PKA inhibitor H-89 (10 uM) for 15 minutes at 37°C.
The data are presented as the ratio of violet (405 nm) to blue (510 nm)
Indo-1 fluorescence and were calculated using FlowJo (Tree Star Inc.).

Adoptively transferred CD4" T cells induced colitis. Colitis was induced by
adoptive transfer of naive CD45RB" CD4* T cells: sorted naive CD4" T cells
(CD4*CD435RBMCD25-, 1 x 105 cells/mouse) from WT or Gnas*? spleen
were adoptively transferred into 12-week-old sex- and age-matched Ragl~
mice as described previously (37). A group of Ragl~~ mice also received

—_

. Weinstein LS, Liu J, Sakamoto A, Xie T, Chen M. 2009;206(3):535-548.

0.5 x 105 CD4SRB°CD25" (Tregs) from WT mice; naive CD4* T cells (1 x 103
cells) were used controls. After transfer, mice were monitored for weight
loss and signs of intestinal inflammation. Diseased animals were sacrificed
for analysis between 4 and 6 weeks after transfer. Splenic and mesenteric
lymph node (MLN) cells were cultured in RPMI-1640 medium and stimu-
lated by PMA/ionomycin for S hours in the presence of GolgiStop (BD Bio-
sciences — Pharmingen) for intracellular staining. The colon explants were
isolated and cultured as described previously (37), and cytokines levels in
the supernatant were measured (ELISA).

Histological evaluation of colitis. The colon was excised, opened longitudi-
nally, rolled onto a wooden stick, fixed with 10% neutral buffered formal-
dehyde solution, and embedded in paraffin. Tissue sections (5 wm) were
prepared, deparaffinized, and stained with H&E. Sections were analyzed
in a blinded fashion as described in previous studies (37).

Quantitative PCR analysis. Isolation of RNA was carried out using an
RNeasy Mini Kit (QIAGEN) according to the manufacturer’s instruc-
tions. The cDNA was synthesized using Superscript III First-Strand sys-
tem (Invitrogen). Quantitative PCR analysis was performed as described
previously (37). SYBR Green PCR Master Mix was used for real-time PCR
(7300 system, Applied Biosystems). Samples were run in duplicate or trip-
licate and normalized by a housekeeping gene (mouse Rplp0 and mouse 18s
rRNA). The primer sequences are provided in Supplemental Table 1.

Statistics. Data are presented as mean + SEM. Unpaired Student’s ¢ test
with 2-tailed P values was used for statistical analyses unless indicated oth-
erwise (GraphPad Prism software). In all tests, P values less than 0.05 were
considered statistically significant.

Study approval. All experimental procedures were approved by the
UCSD IACUC.
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